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Abstract

In this paper, a new operator splitting scheme is introduced for the numerical solution

of the incompressible Navier-Stokes equations. Under some mild regularity assumptions

on the PDE solution, the stability of the scheme is presented, and error estimates for the

velocity and the pressure of the proposed operator splitting scheme are given.
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1. Introduction

In this paper, we consider the numerical approximation of the unsteady Navier-Stokes equa-

tions:






∂u

∂t
− ν △ u+ (u · ▽)u+ ▽p = f inΩ× [0, T ],

▽ · u = 0 inΩ× [0, T ],

(1.1)

where Ω is a bounded domain in Rd with a sufficiently regular boundary ∂Ω. u, p are the

velocity, pressure of the flow respectively, and ν = 1
Re

is the kinematic viscosity coefficient, Re

is the Reynolds number.

For the well-posedness, the equations are supplemented with appropriate initial and bound-

ary condition:

u(x, 0) = u0 x ∈ Ω ,u(x, t) = g(x, t) (x, t) ∈ ∂Ω× [0, T ]. (2.2)

The difficulties for the numerical simulation of incompressible flows are mainly of two kinds:

nonlinearity and incompressibility, the velocity and the pressure are coupled by the incompress-

ibility constraint, which requires that the solution spaces satisfy the so called inf-sup condition.

To overcome these difficulties, operator splitting methods and projection methods, which can

be viewed as fractional step methods, are introduced. Fractional step methods allow to separate

the effects of the different operators appearing in the equation by splitting each step into several

sub-steps in order to reduce the cost of simulations.

The origin of this category of methods is due to the work of Chorin [1] and Temam [2],

i.e., the so called projection method, in which the second step consists of the projection of
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an intermediate velocity field onto the space of solenoidal vector fields. The most attractive

feature of projection methods is that, at each time step, one only needs to solve a sequence

of decoupled elliptic equations for the velocity and the pressure, which makes the projection

method very efficient for large scale numerical simulations. Guermond, Minev and Shen in [3]

review theoretical and numerical convergence results available for projection methods. In[4-

7], the analysis on first-order accurate schemes in time are presented. In [8,9], Shen derived

a second-order error estimates for the projection method. However, several issues related to

these methods still deserve further analysis, and perhaps the most important ones are the

behavior of the computed pressure near boundaries and the stability of the pressure itself. The

incompatibility of the projection boundary conditions may introduce a numerical boundary

layer of size O(
√
ν∆t) [10,11], where ν is the kinematic viscosity and ∆t is the time step size.

In addition, these methods have a main disadvantage that splitting error is inevitable unless

the operators are commute.

In this paper, we will consider the non-stationary Navier-Stokes equations with Dirichlet

boundary conditions and provide some error estimates for both velocity and pressure approxi-

mations by the operator splitting scheme. It is a two-step scheme, which allows to enforce the

original boundary conditions of the problem in all substeps of the scheme[12].

The paper is organized as follows: In Section 2, we introduce some function and space

notations and regularity assumptions for the PDE solution. In Section 3, we describe a new

operator splitting method. In Section 4, the proof of the stability of the new method is given.

In Section 5, we give an error analysis of this method. Error estimates for both velocity and

pressure are obtained. Finally, numerical test results are presented in Section 6 to verify the

theoretical results of Section 5.

2. Function Setting

In order to study approximation scheme for the problem (1.1). The following notations and

assumptions are introduced.

we denote by (·, ·) and ‖ · ‖ the inner product and norm on L2(Ω) or L2(Ω)d. The space

H1
0 (Ω) and H1

0 (Ω)
d are equipped with their usual norm, i.e.,

‖u‖21 =
∫

Ω

|∇u(x)|2dx.

The norm in Hs(Ω) will be denoted simply by ‖ · ‖s. We will use < ·, · > to denote the duality

between H−s(Ω) and Hs
0 (Ω) for all s > 0.

The following subspace is also be introduced:

V =
{

u ∈ H1
0 (Ω)

d : divu = 0
}

,

H =
{

u ∈ L2(Ω)d : divu = 0,u · n = 0)
}

.

For the treatment of the convective term, the following trilinear form is considered

b(u,v,w) =

∫

Ω

(u · ∇)v ·wdx.

It is well known that b(·, ·, ·) is continuous in Hm1(Ω) ×Hm2+1(Ω) ×Hm3(Ω), provided m1 +

m2 +m3 ≥ d/2 if mi 6= d/2, i = 1, 2, 3, and this form is skew-symmetric with respect to its
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last two arguments, i.e.,

b(u,v,w) = −b(u,w,v) ∀u ∈ H,v,w ∈ H1
0 (Ω)

d.

In particular, we have

b(u,v,v) = 0 ∀u ∈ H,v ∈ H1
0 (Ω)

d, (2.1)

and for d ≤ 4,

b(u,v,w) ≤



































































c‖u‖1‖v‖1‖w‖1,
c‖u‖‖v‖2‖w‖1,
c‖u‖1‖v‖2‖w‖,
c‖u‖‖v‖1‖w‖2,
c‖u‖2‖v‖1‖w‖,
c‖u‖L8(Ω)‖v‖1‖w‖

L
8
3 (Ω)

,

c‖u‖1‖v‖1‖w‖L3(Ω),

c‖u‖1‖v‖1‖w‖ 1
2 ‖w‖

1
2

1 ,

c‖u‖ 1
2 ‖u‖

1
2

1 ‖v‖1‖w‖1.

(2.2)

We also define the Stokes operator

Au = −P∆u, ∀u ∈ D(A) = V ∩H2(Ω)d,

where PH is an orthogonal projector in the Hilbert space L2(Ω)n onto its subspace H. The Stokes

operator A is an unbounded positive self-adjoint closed operator in H with domain D(A). Its

inverse A−1 is compact in H, and have following properties: there exist constant c1, c2 > 0,

such that ∀u ∈ H ,

{

‖A−1u‖s ≤ c1‖u‖s−2, for s = 1, 2,

c2‖u‖2−1 ≤ (A−1u,u) ≤ c21‖u‖2−1.
(2.3)

Further, from (2.3), we will use (A−1u,u)
1
2 as an equivalent norm of H−1(Ω)d for u ∈ H.

For the purpose of this paper, we also need the following regularity assumptions [9]:

• (A1) u0 ∈ H1(Ω)d ∩ V , f ∈ L∞(0, T ;L2(Ω)d) ∩ L2(0, T ;H1(Ω)d),

• (A2) sup
t∈[0,T ]

‖u(t)‖1 ≤ M ,

• (A3) ft ∈ L2(0, T ;H−1(Ω))d,

• (A4)
∫ T

0
‖utt‖2−1dt ≤ M ,

where (A2) is automatically satisfied with some appropriate constant M when d=2. However,

when in the three-dimension case, we need assume additionally. Under the regularity assump-

tion (A1-A2), one can show that[9]

(a) sup
t∈[0,T ]

{‖u(t)‖2 + ‖ut(t)‖+ ‖∇p(t)‖} ≤ M1,

(b)
∫ T

0 ‖ut(t)‖21 ≤ M1.

In addition, if the assumption (A1-A3)) hold, we have
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(c)
∫ T

0
‖utt‖2−1dt ≤ M1,

which will be used in the sequel. Next, we cite the following Lemma.

Lemma (Discrete Gronwall Lemma). Let yn, hn, gn, fn be nonnegative sequences satisfying

ym +∆t

m
∑

n=0

hn ≤ B +∆t

m
∑

n=0

(

gnyn + fn
)

,

with ∆t

[ T

∆t
]

∑

n=0

gn ≤ M, ∀ 0 ≤ m ≤ [
T

∆t
].

Assume ∆tgn < 1 and let σ = max
0≤n≤[ T

∆t
]
(1 −∆tn)−1. Then

ym +∆t
m
∑

n=0

hn ≤ exp(σM)
(

B +∆t
m
∑

n=0

fn
)

∀m ≤ [
T

∆t
].

Hereafter, we will use c to denote a generic constant which depends only on Ω, ν, T , and

constants from various Sobolev inequalities.

3. New Operator Splitting Scheme

Eq. (1.1) can be written as
∂u

∂t
= A1 +A2, (3.1)

where

A1 = −(u · ∇)u+
1

2
ν∆u, A2 =

1

2
ν∆u−∇p+ f . (3.2)

Based on the first-order accurate operator splitting theory, an algorithm can be formulated as

follows, for t ∈ [tn, tn+1]











∂ũ

∂t
= A1,

ũ(tn,x) = u(tn,x),
−→











∂û

∂t
= A2,

û(tn,x) = ũ(tn+1,x),
(3.3)

and take u(tn+1,x) ≈ û as the approximate solution of the equation at time tn+1 (1.1).

The scheme (3.3) has a irreducible splitting error of order O(∆t). Hence, using a higher-

order time stepping scheme does not improve the overall accuracy. So, a semi-discretized version

can be obtained as follows: let u0 = u0, we solve successively ũn+1, and {ûn+1, p̂n+1} by







ũn+1 − ûn

∆t
+ (ûn · ∇)ũn+1 − 1

2ν∆ũn+1 = 0,

ũn+1|∂Ω = g(tn+1,x),
(3.4)















ûn+1 − ũn+1

∆t
− 1

2ν∆ûn+1 +∇p̂n+1 = f(tn+1),

divûn+1 = 0,

ûn+1 = g(tn+1,x).

(3.5)

Note that we have omitted the dependency to x of the function f to simplify our notations, we

will do so for {u,p}.
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In the first step (3.4), we solve an intermediate velocity ũn+1, which does not satisfy the

incompressibility condition. Then in the second step we project ũn+1 onto the divergence free

space H to obtain an appropriate velocity approximation ûn+1.

The first step of method can be seen as a linearized Burger’s problem. The second step is

a stokes problem, the discretization of which leads to a symmetric system of linear equations.

One defect of this method is that the discrete inf-sup compatibility condition must be satisfied.

As can be seen in (3.5), the main difference between this method and the standard projection

method is the introduction of a viscous term in the incompressible step, which allows the

imposition of the original boundary condition (2.2) on the end-of-step velocity ûn+1. Similar

ideas can be found in the θ− scheme [13] and in several other methods such as those of [14-16],

all of which involve an incompressible step with part of the viscous term.

4. Stability Analysis

Although we consider that the first order, linearized form of the convective term (û·∇)ũn+1,

similar error estimates can be obtained for other approaches, such as the full nonlinear form

(ũn+1 · ∇)ũn+1. For the sake of simplicity, we will only consider the homogeneous boundary

condition u(t)|∂Ω = 0, i.e.,g(t,x)=0 for the scheme (3.4-3.5).

Theorem 4.1. If the regularity assumptions (A1)-(A2) hold, we have

ũn ∈ L2(0, T,H1(Ω)d) ∩ L∞(0, T, L2(Ω)d), (4.1a)

ûn ∈ L2(0, T,H1(Ω)d) ∩ L∞(0, T, L2(Ω)d). (4.1b)

Proof. We take the inner product of (3.4) with 2∆tũn+1 to get

‖ũn+1 − ûn‖2 + ‖ũn+1‖2 − ‖ûn‖2 + ν∆t‖ũn+1‖21 = 0. (4.2)

Next, taking the inner product of (3.5) with 2∆tûn+1, and using the condition div ûn+1 = 0,

we obtain

‖ũn+1 − ûn+1‖2 + ‖ûn+1‖2 − ‖ũn+1‖2 + ν∆t‖ûn+1‖21 = 2∆t
(

f(tn+1), û
n+1

)

. (4.3)

Combing (4.2-4.3), the below inequality holds

‖ũn+1 − ûn+1‖2 + ‖ûn+1‖2 +∆tν‖ûn+1‖21 + ‖ũn+1 − ûn‖2 + ν∆t‖ũn+1‖21
≤ 2∆t

(

f(tn+1), û
n+1

)

+ ‖ûn‖2. (4.4)

Using the Young inequality, we have

‖ûn+1‖2 + ‖ũn+1 − ûn+1‖2 + ‖ũn+1 − ûn‖2 + ν∆t
(

‖ũn+1‖21 + ‖ûn+1‖21
)

≤ c∆t‖(f(tn+1)‖2 +∆t‖ûn+1‖2 + ‖ûn‖2.

Summing up the above inequality for n=0. . . r ≤ N , we obtain

‖ûr+1‖2 +
r

∑

n=0

‖ũn+1 − ûn+1‖2 +
r

∑

n=0

‖ũn+1 − ûn‖2 +∆tν

r
∑

n=0

‖ûn+1‖21

+ ν∆t

r
∑

n=0

‖ũn+1‖21 ≤ c sup
t∈[0,T ]

‖f(t)‖2 + ‖u0‖2 +∆t

r
∑

n=0

‖ûn+1‖2. (4.5)
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Applying the discrete Gronwall lemma to the above inequality, we obtain

‖ûr+1‖2 +
r

∑

n=0

‖ũn+1 − ûn+1‖2 +
r

∑

n=0

‖ũn+1 − ûn‖2 +∆tν

r
∑

n=0

‖ûn+1‖21

+ ν∆t
r

∑

n=0

‖ũn+1‖21 ≤ c sup
t∈[0,T ]

‖f(t)‖2 + ‖u0‖2. (4.6)

Thus, using the regularity properties of the continuous solution u, for arbitrary N, we have

‖ûn+1‖2 +
N
∑

n=0

(

‖ũn+1 − ûn+1‖2 + ‖ũn+1 − ûn‖2
)

+ ν∆t
N
∑

n=0

(

‖ûn+1‖21 + ‖ũn+1‖21
)

≤ c, (4.7)

which means that

ũn ∈ L2(0, T,H1(Ω)d), ûn ∈ L2(0, T,H1(Ω)d) ∩ L∞(0, T, L2(Ω)d).

From (4.2),yields

‖ũn+1‖2 ≤ ‖ûn‖2. (4.8)

So we have ũn ∈ L∞(0, T, L2(Ω)d). The proof is complete. �

Remark 1. This can be viewed as the discrete version of the classical energy estimate for the

Navier-Stokes equations [19]. From (4.5), we have

‖ûN+1‖2 ≤ c∆t

N
∑

n=0

‖f(tn+1)‖20 + ‖u0‖2.

This estimate deteriorates as N increases. Nevertheless, it provides a useful bound for ‖ûN+1‖2
for the first few time steps, that is for small T .

5. Error Analysis

In this section, we present some error analysis of the fractional method introduced in the

previous section. Firstly, we define the semidiscrete velocity error as:

ên+1 = u(tn+1)− ûn+1, ẽn+1 = u(tn+1)− ũn+1.

Theorem 5.1. Under the regularity assumptions (A1)-(A3), there exists a constant c, such

that

‖êN+1‖2 + ‖ẽN+1‖2 +
N
∑

n=0

(

‖ẽn+1 − ên‖2 + ‖ên+1 − ẽn+1‖2

+ ν∆t(‖ên+1‖21 + ‖ẽn+1‖21)
)

≤ c∆t. (5.1)
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Proof. Let Rn be the truncation error defined by

1

∆t

(

u(tn+1)− u(tn)
)

− ν∆u(tn+1) + (u(tn+1) · ∇)u(tn+1) +∇p(tn+1)

= f(tn+1) +Rn, (5.2)

where Rn is the integral residual of the Taylor series, i.e.

Rn =
1

∆t

∫ tn+1

tn

(t− tn)uttdt.

By subtracting (3.4) from (5.2), we obtain

ẽn+1 − ên

∆t
− 1

2
ν∆ẽn+1 − 1

2
ν∆u(tn+1)

= (ûn · ∇)ũn+1 − (u(tn+1) · ∇)u(tn+1) +Rn −∇p(tn+1) + f(tn+1). (5.3)

The nonlinear terms on the right-side can be split up three terms:

(ûn · ∇)ũn+1 − (u(tn+1) · ∇)u(tn+1)

= −(ên · ∇)ũn+1 + ((u(tn)− u(tn+1)) · ∇)ũn+1 − (u(tn+1) · ∇)ẽn+1. (5.4)

Taking the inner product of (5.3) with 2∆tẽn+1, using the identity (a-b,2a)=|a|2+ |a+b|2−|b|2,
we obtain

‖ẽn+1‖2 + ‖ẽn+1 − ên‖2 − ‖ên‖2 + ν∆t‖ẽn+1‖21 − ν∆t(∆u(tn+1), ẽ
n+1)

= 2∆t < Rn, ẽn+1 > −2∆t(∇p(tn+1), ẽ
n+1)− 2∆tb(ên, ũn+1, ẽn+1)

+ 2∆tb(u(tn)− u(tn+1), ũ
n+1, ẽn+1)− 2∆tb(u(tn+1), ẽ

n+1, ẽn+1)

+ 2∆t(f(tn+1), ẽ
n+1). (5.5)

On the other hand, we derive from (3.5) that

ên+1 − ẽn+1

∆t
+

1

2
ν∆ûn+1 −∇p̂n+1 + f(tn+1) = 0.

Taking the inner product of the above equality with 2∆tên+1, and using div ên+1 = 0, we

obtain

‖ên+1‖2 + ‖ên+1 − ẽn+1‖2 − ‖ẽn+1‖2 +∆tν(∆ûn+1, ên+1) + 2∆t(f(tn+1), ê
n+1) = 0. (5.6)

Combing (5.5) with (5.6), the below expression is derived

‖ên+1‖2 + ‖ẽn+1 − ên‖2 + ‖ên+1 − ẽn+1‖2 +∆tν‖ên+1‖21 + ν∆t‖ẽn+1‖21
= 2∆t < Rn, ẽn+1 > −2∆t(∇p(tn+1), ẽ

n+1)− 2∆tb(ên, ũn+1, ẽn+1)

+ 2∆tb(u(tn)− u(tn+1), ũ
n+1, ẽn+1)− 2∆tb(u(tn+1), ẽ

n+1, ẽn+1)

+ 2∆t(f(tn+1), ẽ
n+1 − ên+1) + ∆tν(∆u(tn+1), ẽ

n+1 − ên+1) + ‖ên‖2. (5.7)

We bound each term in the right-hand side of (5.7) independently. Consider the Taylor residual

term:

2∆t < Rn, ẽn+1 >≤ 2∆t‖Rn‖−1‖ẽn+1‖1 ≤ ∆tν

6
‖ẽn+1‖21 + c∆t2

∫ tn+1

tn

‖utt‖2−1dt.
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For the pressure gradient term:

−2∆t(∇p(tn+1), ẽ
n+1) =− 2∆t(∇p(tn+1), ẽ

n+1 − ên)

≤ 1

4
‖ẽn+1 − ên)‖2 + c∆t2‖∇p(tn+1)‖2.

For the nonlinear terms:

−2∆tb(ên, ũn+1, ẽn+1) =− 2∆tb(ên,u(tn+1), ẽ
n+1) ≤ c∆t‖ên‖‖ẽn+1‖1‖u(tn+1)‖2

≤∆tν

6
‖ẽn+1‖21 + c∆t‖ên‖2,

2∆tb(u(tn)− u(tn+1), ũ
n+1, ẽn+1) = − 2∆tb(u(tn)− u(tn+1), ẽ

n+1, ũn+1)

= − 2∆tb(u(tn)− u(tn+1), ẽ
n+1,u(tn+1))

≤ c∆t‖u(tn)− u(tn+1)‖‖ẽn+1)‖1‖u(tn+1)‖2

≤ ∆tν

6
‖ẽn+1‖21 + c∆t2

∫ tn+1

tn

‖ut‖2dt,

−2∆tb(u(tn+1), ẽ
n+1, ẽn+1) = 0.

The external term:

2∆t(f(tn+1), ẽ
n+1 − ên+1) ≤ 1

4‖ẽn+1 − ên+1‖2 + c∆t2‖f(tn+1)‖2.

The viscous term:

2∆t(ν∆u(tn+1), ẽ
n+1 − ên+1) ≤ 1

4
‖ẽn+1 − ên+1‖2 + c∆t2‖∆u(tn+1)‖2

≤ 1

4
‖ẽn+1 − ên+1‖2 + c∆t2‖u(tn+1)‖22.

Inserting the above estimate into (5.7), we obtain

‖ên+1‖2 + 1

2
‖ẽn+1 − ên‖2 + 1

2
‖ên+1 − ẽn+1‖2 + ν∆t‖ên+1‖21 +

1

2
ν∆t‖ẽn+1‖21

≤ c∆t2
∫ tn+1

tn

‖utt‖2−1dt+ c∆t2‖∇p(tn+1)‖2 + c∆t‖ên‖2

+ c∆t2
∫ tn+1

tn

‖ut‖2dt+ c∆t2‖f(tn+1)‖2 + c∆t2‖u(tn+1)‖22. (5.8)

Summing up the inequality (5.8) for n=0,1,· · · N , the below formula holds

‖êN+1‖2 +
N
∑

n=0

(
1

2
‖ẽn+1 − ên‖2 + 1

2
‖ên+1 − ẽn+1‖2 + ν∆t‖ên+1‖21 +

1

2
ν∆t‖ẽn+1‖21)

≤ c∆t(∆t

∫ tT

0

‖utt‖2−1dt+ sup
t∈[0,T ]

‖∇p(t)‖2 +∆t

∫ T

0

‖ut‖2dt

+ sup
t∈[0,T ]

‖f(t)‖2 + sup
t∈[0,T ]

‖u(t)‖22) + c∆t

N
∑

n=0

‖ên‖2. (5.9)
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Applying the discrete Gronwall lemma to the above inequality, we derive

‖êN+1‖2 +
N
∑

n=0

(
1

2
‖ẽn+1 − ên‖2 + 1

2
‖ên+1 − ẽn+1‖2 + ν∆t‖ên+1‖21 +

1

2
ν∆t‖ẽn+1‖21)

≤ c∆t(∆t

∫ T

0

‖utt‖2−1dt+ sup
t∈[0,T ]

‖∇p(tn+1)‖2 +∆t

∫ T

0

‖ut‖2dt

+ sup
t∈[0,T ]

‖f(t)‖2 + sup
t∈[0,T ]

‖u(t)‖22). (5.10)

Using the regularity properties, we obtain

‖êN+1‖2 +
n=N
∑

n=0

(

‖ẽn+1 − ên‖2 + ‖ên+1 − ẽn+1‖2 + ν∆t‖ên+1‖21

+ ν∆t‖ẽn+1‖21
)

≤ c∆t. (5.11)

Finally, the bounds for ũn+1 follow from (5.11) and the triangle inequality. Theorem 5.1 is

proved. �

Remark 2. Theorem 5.1 shows that ‖ũn+1‖1 ≤ c, ‖ûn+1‖1 ≤ c, since ‖ên+1‖1 ≤ c, ‖ẽn+1‖1 ≤
c. Moreover, we also have ‖ũn+1‖0 ≤ c∆t

1
2 , ‖ûn+1‖0 ≤ c∆t

1
2 .

Next, we will use the previous result to improve the error estimates for the velocity and give

an error estimate for the pressure as well.

Theorem 5.2. Under the regularity assumptions (A1)-(A3), there exists a constant c, such

that

‖êN+1‖2−1 +

N
∑

n=0

(

‖ên+1 − ên‖2−1 + ν∆t‖ẽn+1‖2 + ν∆t‖ên+1‖2
)

≤ c∆t2, (5.12)

∆t

N
∑

n=0

‖p(tn+1)− p̂n+1‖2L2
0(Ω) ≤ c∆t. (5.13)

Proof. Taking the sum of (3.4) and (3.5), we obtain

ûn+1 − ûn

∆t
+ (ûn · ∇)ũn+1 − 1

2
ν∆ũn+1 − 1

2
ν∆ûn+1 +∇p̂n+1 = f(tn+1). (5.14)

Let us denote

q̂n+1 = p(tn+1)− p̂n+1.

Subtracting (5.14) from (5.2), we obtain

ên+1 − ên

∆t
− 1

2
ν∆ẽn+1 − 1

2
ν∆ên+1 +∇q̂n+1

= (ûn · ∇)ũn+1 − (u(tn+1) · ∇)u(tn+1) +Rn. (5.15)

Taking the inner product of the Equation (5.15) with 2∆tA−1ên+1, we obtain

(ên+1, A−1ên+1)− (ên, A−1ên) + (ên+1 − ên, A−1(ên+1 − ên))

− ν∆t(∆ẽn+1, A−1ên+1)− ν∆t(∆ên+1, A−1ên+1)

= 2∆tb(ûn, ũn+1, A−1ên+1)− 2∆tb(u(tn+1),u(tn+1, A
−1ên+1)

+ 2∆t(Rn, A−1ên+1). (5.16)
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Using

− ν∆t(∆ẽn+1, A−1ên+1) ≥ ν∆t
(1

4
‖ên+1‖2 − c‖ẽn+1 − ên+1‖2

)

,

− ν∆t(∆ên+1, A−1ên+1) = ν∆t‖ên+1‖2.

and (5.16) yields

‖ên+1‖2−1 − ‖ên‖2−1 + ‖ên+1 − ên‖2−1 +
5

4
ν∆t‖ên+1‖2

≤ 2∆tb(ûn, ũn+1, A−1ên+1)− 2∆tb(u(tn+1),u(tn+1, A
−1ên+1)

+ 2∆t(Rn, A−1ên+1) + c∆t‖ẽn+1 − ên+1‖2, (5.17)

similar to (5.4) for the nonlinear term, and together with (5.17), yields

‖ên+1‖2−1 − ‖ên‖2−1 + ‖ên+1 − ên‖2−1 +
5

4
ν∆t‖ên+1‖2

= − 2∆tb(ên, ũn+1, A−1ên+1) + 2∆tb(u(tn)− u(tn+1), ũ
n+1, A−1ên+1)

− 2∆tb(u(tn+1), ẽ
n+1, A−1ên+1) + 2∆t(Rn, A−1ên+1) + c∆t‖ẽn+1 − ên+1‖2. (5.18)

We will focus on the right-hand side as follows: For the Taylor residual term, we have

2∆t(Rn, A−1ên+1)

≤ c∆t‖Rn‖−1‖A−1ên+1‖1 ≤ ∆t‖ên+1‖2−1 + c∆t2
∫ tn+1

tn

‖utt‖2−1dt. (5.19)

For the nonlinear term, we have

− 2∆tb(ên, ũn+1, A−1ên+1) = 2∆tb(ên, A−1ên+1, ũn+1)

= 2∆tb(ên, A−1ên+1,u(tn+1))− 2∆tb(ên, A−1ên+1, ẽn+1) =: T1 + T2.

It follows from (2.2), (2.3) and (A2) that

T1 ≤ c∆t‖ên‖‖A−1ên+1‖1‖u(tn+1)‖2 ≤ c∆t‖ên‖‖ên+1‖−1

≤ c∆t
(

‖ên+1‖+ ‖ên+1 − ẽn+1‖+ ‖ẽn+1 − ên‖
)

‖ên+1‖−1

≤ ν∆t

16
‖ên+1‖2 + c∆t

(

‖ên+1 − ẽn+1‖2 + ‖ẽn+1 − ên‖2
)

+ c∆t‖ên+1‖2−1. (5.20)

Furthermore, using Theorem 5.1 gives

T2 ≤ c∆t‖ên‖‖A−1ên+1‖2‖ẽn+1‖1 ≤ c∆t‖ên‖‖ên+1‖‖ẽn+1‖1

≤ c∆t

3

2 ‖ên+1‖‖ẽn+1‖1 ≤ ν∆t

16
‖ên+1‖2 + c∆t2‖ẽn+1‖1, (5.21)

and

− 2∆tb(u(tn+1), ẽ
n+1, A−1ên+1) = 2∆tb(u(tn+1), A

−1ên+1, ẽn+1)

≤ c∆t‖u(tn+1)‖2‖A−1ên+1‖1‖ẽn+1‖ ≤ c∆t‖ên+1‖−1‖ẽn+1‖

≤ c∆t‖ên+1‖−1

(

‖ên+1 − ẽn+1‖+ ‖ên+1‖
)

≤ ν∆t

16
‖ên+1‖2 + c∆t‖ên+1 − ẽn+1‖2 + c∆t‖ên+1‖2−1. (5.22)
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Similarly

2∆tb
(

u(tn)− u(tn+1), ũ
n+1, A−1ên+1

)

≤ 2∆t‖u(tn)− u(tn+1)‖‖ũn+1‖1‖A−1ên+1‖2

≤ ν∆t

16
‖ên+1‖2 + c∆t2

∫ tn+1

tn

‖ut‖2dt.

Combing the above inequality into (5.18), we obtain

‖ên+1‖2−1 − ‖ên‖2−1 + ‖ên+1 − ên‖2−1 + ν∆t‖ên+1‖2

= c∆t2
(

∫ tn+1

tn

‖utt‖2−1dt+

∫ tn+1

tn

‖ut‖2dt
)

+ c∆t
(

‖ên+1 − ẽn+1‖2 + ‖ẽn+1 − ên‖2
)

+ c∆t2‖ẽn+1‖1 + c∆t‖ên+1‖2−1.

Taking the sum of the above inequality for n from 0 to N , and using the regularity assumption

(A1)-(A3) and Theorem 5.1, we have

‖êN+1‖2−1 +

N
∑

N=0

(‖ên+1 − ên‖2−1 + ν∆t‖ên+1‖2) ≤ c∆t2 + c∆t

N
∑

N=0

‖ên+1‖2−1.

By applying the discrete Gronwall lemma to the last inequality, we obtain

‖êN+1‖2−1 +

N
∑

N=0

(

‖ên+1 − ên‖2−1 + ν∆t‖ên+1‖2
)

≤ c∆t2. (5.23)

For ũn+1, we have

ν∆t

N
∑

N=0

‖ẽn+1‖2 ≤ ν∆t

N
∑

N=0

(

‖ên+1‖+ ‖ẽn+1 − ên+1‖
)

≤ c∆t2,

together with (5.23), we derive (5.12).

Next, we derive the estimate for the pressure, we recast (5.15) as

∇q̂n+1 =
1

2
ν∆ẽn+1 +

1

2
ν∆ên+1 − ên+1 − ên

∆t

+ (ûn · ∇)ũn+1 − (u(tn+1) · ∇)u(tn+1) +Rn. (5.24)

Firstly, by using (2.2) and Theorem 5.1, for all v ∈ H1
0 (Ω)

d,

(ûn · ∇)ũn+1 − (u(tn+1) · ∇)u(tn+1)

≤ c‖u(tn+1)− u(tn)‖‖u(tn+1)‖2‖v‖1 + c‖ên‖1‖u(tn+1)‖1‖v‖1 + c‖ûn‖1‖ẽn+1‖1‖v‖1
≤

(

‖ẽn+1‖1 + ‖ên‖1 + ‖u(tn+1)− u(tn)‖
)

‖v‖1.

Using the Schwarz inequality, we have also, for all v ∈ H1
0 (Ω)

d,

(

1

2
ν∆ẽn+1 +

1

2
ν∆ên+1 − ên+1 − ên

∆t
+Rn,v

)

≤
(

1

∆t
‖ên+1 − ên‖−1 + ‖Rn‖−1 +

1

2
ν‖ên+1‖1 +

1

2
ν‖ẽn+1‖1

)

‖v‖1,
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by the above inequality, we derive

‖q̂n+1‖L2
0Ω

≤ c sup
v∈H1

0(Ω)d

(∇q̂n+1,v)

‖v‖1

≤ c

∆t
‖ên+1 − ên‖−1 + c

(

‖Rn‖−1 + ‖ẽn+1‖1 + ‖ên+1‖1 + ‖ên‖1 + ‖u(tn+1)− u(tn)‖
)

.

Consequently, by using Theorem 5.1 and (5.23), we obtain (5.13). �

Theorem 5.3. Assume that the regularity assumption (A1)-(A3) hold, and the domain Ω is

of class C2(or is a convex polygon or polyhedron), then for small enough ∆t:

∆t

N
∑

n=0

(

‖ũn+1‖22 + ‖ûn+1‖22
)

≤ c∆t

N
∑

n=0

‖p̂‖21 ≤ c.

Proof. A similar argument to that of [18,Theorem 3] is presented. We recast (3.4) as

ν∆ũn+1 = 2

(

ũn+1 − ûn

∆t
+ (ûn · ∇)ũn+1

)

. (5.25)

Then

∆t
N
∑

n=0

∥

∥

∥

∥

ũn+1 − ûn

∆t

∥

∥

∥

∥

2

≤ c

∆t

N
∑

n=0

(

‖ũn+1 − u(tn+1)‖2 + ‖u(tn+1 − u(tn)‖+ ‖u(tn)− ûn‖2
)

≤ c

∆t

N
∑

n=0

(

‖ẽn+1‖2 +∆t

∫ tn+1

tn

‖ut‖2dt+ ‖ên‖2
)

≤ c,

where we have used Theorem 5.1. Moreover

‖(ûn · ∇)ũn+1‖
L

3
2 (Ω)

= sup
v∈L3(Ω)

((ûn · ∇)ũn+1,v)

‖v‖L3(Ω)
≤ c‖ûn‖1‖ũn+1‖1 ≤ c,

due to (2.2) and Theorem 5.1. From (5.25), we conclude that ∆ũ is bounded in l2(L
3
2 (Ω)d).

Next the formula (3.5) can be written as

−1

2
ν∆ûn+1 +∇p̂n+1 = f(tn+1)−

ûn+1 − ũn+1

∆t
. (5.26)

The last term above can be bounded in l2(L2(Ω)d) by Theorem 4.1, As a result using the

regularity of solutions of the Stokes problem (5.26) on regular domain, we can assert that ûn+1

is bounded in l2(H2, 3
2 (Ω)d), and p̂n+1 is bounded in l2(H1, 3

2 (Ω)d). According to Sobolev’s

compactness theorem, we conclude that ûn+1 is bounded in l2(L8(Ω)d) for d=2 or d=3.

Furthermore

‖(ûn · ∇)ũn+1‖
L

8
5 (Ω)

= sup
v∈L

8
3 (Ω)

((ûn · ∇)ũn+1,v)

‖v‖
L

8
3 (Ω)

≤ c‖ûn‖ 8
3
‖ũn+1‖1 ≤ c.

We now turn back to (5.25). We enhance the regularity of ∆ũn+1 to l2(L
8
5 (Ω)d), and that of

ûn+1 to l2(H2, 8
5 (Ω)d) and p̂n+1 to l2(H1, 8

5 (Ω)d), as solutions of the Stokes problem (5.26). The
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fact that ûn+1 is bounded in l2(L∞(Ω)d) by Sobolev’s Theorem, together with Theorem 5.1,

shows that (ûn · ∇)ũn+1 is bounded in l2(L2(Ω)d). So the boundedness for ∆ũn+ also holds in

l2(L2(Ω)d), which is sufficient to bound ũn+1 in l2(H2(Ω)d), when Ω is regular enough. Finally,

the bounds for ûn+1 and p̂n+1 follow from the regularity of the Stokes problem. �

The error estimates of Theorem 5.2 can be improved to first order in the norm of l∞(L2(Ω)d)

and l2(H1
0 (Ω)

d) for the velocity ûn+1.

Theorem 5.4. Under the assumption (A1)-(A3), for sufficiently small ∆t, there exists a

constant c such that

‖êN+1‖2 +
N
∑

n=0

‖ên+1 − ên‖2 + ν∆t

N
∑

n=0

(

‖ẽn+1‖21 + ‖ên+1‖21
)

≤ c∆t2.

Proof. Taking the inner product of (5.15) with 2∆tên+1, we have

‖ên+1‖2 − ‖ên‖2 + ‖ên+1 − ên‖2 + ν∆t‖ẽn+1‖21 + ν∆t‖ên+1‖21
= 2∆tb(ûn, ũn+1, ên+1)− 2∆tb(u(tn+1),u(tn+1), ê

n+1) + 2∆t < Rn, ên+1 > . (5.27)

The estimates below are obtained for the right-hand term of (5.27):

2∆t < Rn, ên+1 >≤ ν∆t

10
‖ên+1‖21 + C∆t2

∫ tn+1

tn

‖utt‖2−1dt.

For the nonlinear term in (5.27), similar to (5.4) gives the following estimate:

−2∆tb(u(tn+1, ẽ
n+1.ên+1) ≤ ν∆t

10
‖ên+1‖21 + c∆t‖ẽn+1‖2.

For the remainder of nonlinear term, we have

2∆tb(u(tn)− u(tn+1), ẽ
n+1, ên+1) ≤ ‖u(tn)− u(tn+1)‖1‖ẽn+1‖1‖ên+1‖1

≤ c∆t2
∫ tn+1

tn

‖ut‖21dt+
ν∆t

10
‖ên+1‖21,

and

−2∆tb(ên, ũn+1, ên+1) = 2∆tb(ên, ẽn+1, ên+1)− 2∆tb(ên,u(tn+1), ê
n+1).

Thus,

2∆tb(ên, ẽn+1, ên+1) ≤ c∆t‖ên‖1‖ên+1‖1‖ẽn+1‖ 1
2 ‖ẽn+1‖

1
2

1

≤ c∆t‖ên‖1‖ên+1‖1‖ẽn+1‖ 1
2 ≤ c∆t

5
4 ‖ên‖1‖ên+1‖1

≤ c∆t
3
2 ‖ên‖21 +

ν∆t

10
‖ên+1‖21,

and

− 2∆tb(ên,u(tn+1), ê
n+1) ≤ c∆t‖ên‖0‖u(tn+1)‖2‖ên+1‖1

≤ c∆t‖ên‖0‖ên+1‖1 ≤ ν∆t

10
‖ên+1‖21 + c∆t‖ên‖2.
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Taking the sum of the formula (5.27) for n from 0 to N , together with the above estimates, we

obtain from (5.12) to get

‖êN+1‖2 +
N
∑

n=0

‖ên+1 − ên‖2 + ν∆t
N
∑

n=0

(

‖ẽn+1‖21 +
1

2
‖ên+1‖21

)

= C∆t2
∫ T

0

‖utt‖2−1dt+ c∆t

N
∑

n=0

‖ẽn+1‖2 + c∆t2
∫ T

0

‖ut‖21dt

+ c∆t
3
2

N
∑

n=0

‖ên‖21 + c∆t

N
∑

n=0

‖ên‖2. (5.28)

By virtue of the formula (5.12) and the regularity assumption of solution u, we obtain

‖êN+1‖2 +
N
∑

n=0

‖ên+1 − ên‖2 + ν∆t

N
∑

n=0

(

‖ẽn+1‖21 +
1

2
‖ên+1‖21

)

= C∆t2 + c∆t
3
2

N
∑

n=0

‖ên‖21 + c∆t

N
∑

n=0

‖ên+1‖2.

For sufficiently small ∆t, we can take the last term to left side and apply the discrete Gronwall

lemma to complete the proof. �

Theorem 5.5. Under the assumption (A1)-(A4), for small enough ∆t, there exists constants

c0, and c satisfying 1− 6δ > c0 and 4c
√
∆t‖êN‖2ν−1 < 1, such that

N
∑

n=0

c0‖ẽn+1 − ẽn‖2 ≤ c∆t2. (5.29)

Proof. we shift the index n+ 1 to n in (3.5) to give

ên − ẽn

∆t
+

1

2
ν∆ûn −∇p̂n + f(tn) = 0 (5.30)

and take the sum with (5.3), we obtain

ẽn+1 − ẽn

∆t
− ν

2
∆ẽn+1

= (ûn · ∇)ũn+1 − (u(tn+1) · ∇)u(tn+1) +Rn −∇(p(tn+1)− p̂n)

+ (f(tn+1)− f(tn)) +
ν

2
∆ên +

ν

2
∆(u(tn+1)− u(tn)). (5.31)

Taking the inner product with ∆t(ẽn+1 − ẽn), the left-hand term of above formula can be

written as

‖ẽn+1 − ẽn‖2 + ν∆t

4

(

‖ẽn+1‖21 + ‖ẽn+1 − ẽn‖21 − ‖ẽn‖21
)

. (5.32)

Next, we give the estimates of the right-hand term of (5.31):

ν∆t

2
(∆(u(tn+1)− u(tn)), ẽ

n+1 − ẽn)

= − ν∆t

2
(∇(u(tn+1)− u(tn)),∇(ẽn+1 − ẽn))

≤ c∆t‖u(tn+1)− u(tn)‖1‖ẽn+1 − ẽn‖1
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≤ c∆t‖u(tn+1)− u(tn)‖21 +
ν∆t

8
‖ẽn+1 − ẽn‖21

≤ c∆t2
∫ tn+1

tn

‖ut‖21dt+
ν∆t

8
‖ẽn+1 − ẽn‖21, (5.33)

and

ν∆t

2
(∆ên, ẽn+1 − ẽn)

= − ν∆t

2
(∇ên,∇(ẽn+1 − ẽn)) ≤ c∆t(‖ên‖1 + ‖ẽn+1 − ẽn‖1)

≤ c∆t(‖ên‖1 + ‖ẽn+1‖1 + ‖ẽn‖1) ≤ c∆t2, (5.34)

where we have used Theorem 5.4, and

∆t(f(tn+1)− f(tn), ẽ
n+1 − ẽn) ≤ c∆t3

∫ tn+1

tn

‖ft‖2dt+ δ‖ẽn+1 − ẽn‖2. (5.35)

For the Taylor residual term,we have

∆t(Rn, ẽn+1 − ẽn) ≤ δ‖ẽn+1 − ẽn‖2 + c∆t2
∫ tn+1

tn

t‖utt‖2dt. (5.36)

For the pressure term, since divên+1 = 0, resp.divên = 0, we obtain

−∆t(∇(p(tn+1)− p̂n), ẽn+1 − ẽn)

= ∆t(p(tn+1)− p̂n,∇(ẽn − ẽn+1)) ≤ ∆t‖p(tn+1)− p̂n‖‖ẽn+1 − ẽn‖1
≤

(

‖p(tn+1)‖+ ‖p̂n‖
)(

∆t‖ẽn+1‖1 +∆t‖ẽn‖1
)

≤ c∆t2, (5.37)

where Theorems 5.2 and 5.4 are used.

For the trilinear term, we consider the splitting below:

(ûn · ∇)ũn+1 − (u(tn+1) · ∇)u(tn+1)

= ên · ∇ẽn+1 − (u(tn+1)− u(tn)) · ∇ũn+1 − u(tn+1) · ∇ẽn+1 − ên · ∇u(tn+1).

Using the formula (2.2) and regularity assumption yields

∆tb(u(tn+1), ẽ
n+1, ẽn+1 − ẽn) ≤ δ‖ẽn+1 − ẽn‖2 + c∆t2‖ẽn+1‖21, (5.38)

∆tb(u(tn+1)− u(tn), ẽ
n+1, ẽn+1 − ẽn)

≤ δ‖ẽn+1 − ẽn‖2 + c∆t3‖ũn+1‖1
∫ tn+1

tn

‖ut‖22dt

≤ δ‖ẽn+1 − ẽn‖2 + c∆t3, (5.39)

∆tb(ên,u(tn+1), ẽ
n+1 − ẽn) ≤ δ‖ẽn+1 − ẽn‖2 + c∆t2‖ên‖21,

and

∆tb(ên, ẽn+1, ẽn+1 − ẽn) ≤ c∆t‖ên‖1‖ẽn+1‖1‖ẽn+1 − ẽn‖
1
2

1 ‖ẽn+1 − ẽn‖ 1
2

≤ c∆t
3
2 ‖ên‖21‖ẽn+1‖21 +

√
∆tνδ‖ẽn+1 − ẽn‖1‖ẽn+1 − ẽn‖

≤ c∆t
3
2 ‖ên‖21‖ẽn+1‖21 +

ν∆t

8
‖ẽn+1 − ẽn‖21 + δ‖ẽn+1 − ẽn‖2. (5.40)
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Using (5.33)-(5.40), the regularity (A1-A3), and Theorem 5.1, we obtain

(1− 6δ)‖ẽn+1 − ẽn‖2 + ν∆t

4

(

‖ẽn+1‖21 − ‖ẽn‖21
)

≤ c
(

∆t2 +∆t
3
2 ‖ên‖21‖ẽn+1‖21

)

.

Summing up the above inequality for n from 0 to N gives

N
∑

n=0

c0‖ẽn+1 − ẽn‖2 + ν∆t

4
‖ẽN+1‖21 ≤ c

(

∆t2 +

N
∑

n=0

∆t
3
2 ‖ên‖21‖ẽn+1‖21

)

,

where we have used the assumption 1− 6δ > c0.

Now, we assume that ∆t is sufficiently small such that 4c
√
∆t‖êN‖2ν−1 < 1 holds. Note

that êN is uniformly bounded due to Theorem 5.1. Then by the discrete Gronwall inequality,

the proof is complete. �

6. Numerical Results

In this section, we present some numerical tests to verify the theoretical results of the paper.

Consider problem (2.1) in the domain [0, 1]× [0, 1] with exact solution

u(x, y) = (u1(x, y), u2(x, y)),

p(x, y) = 10(2x− 1)(2y − 1) cos(t),

u1(x, y) = 10x2y(x− 1)2(y − 1)(2y − 1) cos(t),

u2(x, y) = −10xy2(x− 1)(2x− 1)(y − 1)2 cos(t).

The initial condition is set equal to the exact solution and f is computed by evaluating the

momentum equation of problem (1.1) for the exact solution.

The uniform mesh partition of Ω into triangular element is obtained by dividing Ω into

sub-squares of equal size and then drawing the diagonal in each sub-square, see Fig. 6.1.

Fig. 6.1. The domain Ω.

We first compare the numerical solution with the exact solution ∆t for ν=0.0005, T = 1, and

∆t = 0.001. The results are resented in Figs. 6.2 and 6.3. We then present computed solutions

using different mesh sizes for ∆t = 0.005, Re=500, T=1(see Table 6.1). Finally, computed

solutions with different time step are presented for T=1, Re=2000, h = 1
20 . It is observed

that the numerical results agree well with the theoretical results. Furthermore, compared with

Chorn’s projection method, our method produces slightly more accurate velocity.
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IsoValue
-0.0167118
-0.0158548
-0.0149977
-0.0141407
-0.0132837
-0.0124267
-0.0115697
-0.0107127
-0.00985566
-0.00899865
-0.00814163
-0.00728462
-0.0064276
-0.00557059
-0.00471358
-0.00385656
-0.00299955
-0.00214253
-0.00128552
-0.000428504

IsoValue
-8.33703
-7.45945
-6.58187
-5.70429
-4.8267
-3.94912
-3.07154
-2.19396
-1.31637
-0.438791
0.438791
1.31637
2.19396
3.07154
3.94912
4.8267
5.70429
6.58187
7.45945
8.33703

Fig. 6.2. Exact solution:P2-P1 element T=1 ∆t = 0.001. Left: velocity streamlines, and Right:

pressure contours.

Fig. 6.3. Numerical solution:P2-P1 element T=1 and ∆t = 0.001. Left: velocity streamlines, and

Right: pressure contours.

Table 6.1: New operator splitting method with respect to different mesh sizes.

1

h

||u− uh||0
||u||0

||u− uh||1
||u||1

||p− ph||0
||p||0

uL2rate uH1rate PL2rate CPU(s)

5 0.0184268 0.1113150 0.03103180 � � � 37.750

10 0.0026112 0.0591252 0.00775794 2.8190 0.9128 2.0000 60.000

15 0.0011489 0.0383126 0.00348799 2.0248 1.0701 1.9715 86.031

Table 6.2: New operator splitting method with respect to different time step.

∆t
||u− uh||0

||u||0

||u− uh||1
||u||1

||p− ph||0
||p||0

uL2rate uH1rate PL2rate CPU(s)

0.1 0.0327224 0.435219 0.0019995 � � � 32.422

0.05 0.0512436 0.105637 0.00064242 0.9270 0.7079 0.5677 37.922

0.01 0.00010314 0.002637 0.0000815 0.7811 0.7381 0.4125 67.312
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