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Abstract. A submerged turbulent plane jet in shallow water impinging vertically onto
the free surface will produce a large-scale flapping motion when the jet exit veloc-
ity is larger than a critical one. The flapping phenomenon is verified in this paper
through a large eddy simulation where the free surface is modeled by volume of fluid
approach. The quantitative results for flapping jet are found to be in good agreement
with available experimental data in terms of mean velocity, flapping-induced velocity
and turbulence intensity. Results show that the flapping motion is a new flow pattern
with characteristic flapping frequency for submerged turbulent plane jets, the mean
centerline velocity decay is considerably faster than that of the stable impinging jet
without flapping motion, and the flapping-induced velocities are as important as the
turbulent fluctuations.

AMS subject classifications: 76D25
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1 Introduction

For a submerged turbulent plane jet in shallow water impinging vertically onto the free
surface, the jet will be self-excited into a flapping oscillation when the jet velocity, exiting
the jet orifice, exceeds a critical value. One important characteristic of the flapping jet is
to enhance mixing by flapping-induced Reynolds stress [1].In some cases, the instability
of jet can be utilized to enhance the dilution. There is therefore a considerable interest in
the design, performance and flow control of diffusers or mixers in chemical engineering,
environmental engineering, and so on.

The flapping motion is a transverse oscillation of turbulent plane jet impinging onto
free surface. A few parametric studies have been done to characterize the onset of flap-
ping instability. Madarame et al. [2] established a relation between the flapping frequency
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and the water depth. Wu et al. [3] performed experiments to delineate the critical jet exit
velocity and the jet flapping frequency. All the experimental results in [2] and [3] were
presented in dimensional form. Hsu et al. [4] and Sun [5] provided more general dimen-
sionless parametric relations for the onset of flapping instability. In [4] and [5], the critical
jet exit velocity Woc was found to increase linearly with the water depth H and to decrease
with the square root of the jet orifice width d. Meanwhile, the critical flapping frequency,
f0, was found to decrease with the root square of the water depth H, that is f0∝

√
g/H. On

the other hand, there remain debates on the mechanics of flapping motion. Hsu et al. [4]
suggested that the flapping behavior was attributed to the self-excited jet instability, asso-
ciated with the pressure restoring force increased by surface deformation due to gravity.
However, in earlier research work, the flapping behavior was confirmed as the unstable
motion due to the coherent turbulent structure [6, 7]. Recently, Espa et al. [8] conducted
experiments and smoothed particle hydrodynamics simulation to study the instability of
a vertical plane jet introduced from the bottom of a finite depth laterally-confined water
environment. It should be noted that the flow region in [8] was lateral confined and the
ratio of water depth to orifice width was too small to reach the self-similar regime [9] for
a submerged plane jet.

There are several kinds of self-induced oscillations coupled with jet flow and rela-
tively few investigations have been conducted on them. The impingement of turbulent
plane jets, upon an edge of a solid plate (a wedge of zero degree) in parallel to the jet flow
was studied by Rockwell [10] and analyzed numerically by Ohring [11]. Ohring [11] pre-
dicted that the flapping oscillation of the impinging jet occurs at the subharmonic mode
associated with the coherent large eddies. Gutmark et al. [12] studied the impingement
of a plane jet onto a solid plate normal to the jet flow (a wedge of 180 degree) and did not
detect any subharmonic transverse oscillations of the jets. Recently, the velocity oscilla-
tion phenomena in the far field region for plane jet at low Reynolds number was studied
by Zhao et al. [13]. In comparison, the transverse flapping oscillation of turbulent jets
in shallow water and more generally the detailed flow characteristics in this condition
have so far received little attention in the specialized literature: only few experimental
works [1–5, 8] and very little numerical study [8, 14] have addressed this topic.

In this paper, a large eddy simulation (LES) technique coupled with the volume of
fluid (VOF) interface capturing method is utilized to investigate the flow characteristics
of flapping motion. The purpose is to achieve an improved understanding of some of the
fundamental characteristics in this flow, including the mean centerline velocity decay,
flapping-induced velocities and frequency of the flapping motion.

2 Governing equations and numerical methodology

Large eddy simulation is implemented in the present work for turbulence closure, in
which large-scale motions are explicitly calculated and the eddies with scale smaller than
the grid or filter size are modeled to represent the effects of unresolved motions on re-
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solved scale. The three-dimensional time dependent space filtered Navier-Stokes (N-S)
equations coupled with volume of fluid (VOF) interface capturing equation can be writ-
ten as [15]

ρ
(∂ũ

∂t
+ũ·▽ũ

)
=−∇p+ρg+∇·(µ[∇ũ+∇Tũ])+FST(C)−∇·τSGS, (2.1a)

∇·ũ=0, (2.1b)

∂C

∂t
+ũ·▽C=0, (2.1c)

where an overbar denotes the spatial filter and a tilde represents the Favre filter, i.e.,
Φ̃= ρΦ/ρ. The variable ρ is the volume mass, ũ velocity, p pressure, g the gravitational
acceleration, µ the dynamic viscosity, FST the surface tension force and C the volume
fraction. Through Eq. (2.1c), the volume fraction C is advected with the fluid velocity ũ

and the evolution of either phase is known. The piecewise linear interface construction
(PLIC) method is employed to construct the interface [16]. Note that the Favre filtering
is equal to the conventional spatial filter at locations where the fluid density is constant.
When the filtered volume function C is not constant, the filtered density ρ and viscosity
µ can be prescribed by

ρ=Cρ1+(1−C)ρ0, (2.2a)

µ=Cµ1+(1−C)µ0. (2.2b)

The variables with superscripts 1 and 0 refer to variables in the phase of water and air,
respectively. Sub-grid term in (2.1a) is defined as

τSGS=ρuu−ρũũ. (2.3)

In the present study, the Smagorinsky-Lilly model was used to model the sub-grid scale
(SGS) stress tensor, shown as,

τSGS =−µt(∇ũ+∇Tũ)=−2µtS̃, (2.4a)

S̃ij =
1

2

(∂ũi

∂xj
+

∂ũj

∂xi

)
, (2.4b)

where µt = ρL2
s |S̃| is the SGS viscosity, and |S̃|=

√
2S̃ijS̃ij. Ls is the length scale and is

defined as Ls =min(kd,Cs∆) with k = 0.42. The variable d is the distance to the closest
wall. The value of Smagorinsky constant Cs is chosen as 0.1 in the present study. ∆,
the local grid scale, is computed according to the volume of the computational cell by
∆=(∆x∆y∆z)1/3.

The governing equations are numerically solved by SIMPLE method [17]. In Eq. (2.1a),
a continuum surface force model proposed by Brackbill et al. [18] is implemented for
the treatment of the surface tension effects. Spatial discretization is achieved using a
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second-order-accurate central scheme. Temporal integration of the transient terms is per-
formed by a second-order-accurate implicit scheme. This numerical strategy has already
been applied with success to a wide range of turbulent shear flows such as jets in cross-
flow [19,20] and the temporal mixing layer [21]. We have carefully examined the physical
model and numerical approach used in this study and verified that the calculated results
are reliable.

The flapping motion is a large-scale transverse oscillation. In accordance with
Reynolds & Hussain [22], the space filtered velocity of flapping jet can be decomposed
into three components, shown as,

ũi= 〈ũi〉+ûi+u′
i, (2.5)

where 〈ũi〉 is the time-averaged contribution, ûi is the flapping-induced periodic contri-
bution and u′

i corresponds to the contribution of turbulent motion. Straightforward time
averaging determines 〈ũi〉. Then, the flapping-induced component can be decomposed
in term of Fourier series as:

ûi=
N

∑
n=1

|ûi,n|sin(2nπ f0t+φûi,n
), (2.6)

where f0 denotes the frequency of flapping motion, |ûi,n| and φûi,n
denote the amplitude

and phase angle of the nth harmonic component ûi,n. Then we have,

〈û2
i,n〉=

1

2
|ûi,n|2. (2.7)

As a result, the turbulence intensity and Reynolds shear stress can be obtained by

〈u′
iu

′
j〉= 〈(ũi−〈ũi〉)(ũj−〈ũj〉)〉−

N

∑
n=1

〈ûi,nûj,n〉. (2.8)

3 Results and discussion

3.1 Set-up of problem

As shown in Fig. 1, water enters vertically into the computational domain of Hx×Hy×Hz

with uniform jet exit velocity Wo from a bottom slit. The slit is centered on the lower
boundary of the computational domain with width d. In the Cartesian coordinate system,
the coordinate origin is set at the center of the slit and z is measured upward from the
jet orifice. The water depth and the jet orifice width are maintained at H = 0.1m and
d= 0.002m. Based on empirical formula in [4] and [5], the corresponding critical jet exit
velocity Woc is about 1.31m/s. In order to reproduce the flapping motion, the jet exit
velocity Wo is chosen as 1.72m/s in the present study, which gives Reynolds number
of Re = Wod/ν = 2970, where ν is the fluid viscosity. For the purpose of maintaining
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Figure 1: Computational domain.
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Figure 2: Comparison of the calculated mean centerline velocity with experimental data.

water level at constant in simulation, two velocity outlets are applied at the two end of
the tank bottom. The upper boundary condition for air in the calculation is set to inlet
condition with same pressure. Periodic boundary conditions are applied in the spanwise
(y) direction. Other boundaries are set to solid wall with no-slip boundary condition.

The three-dimensional hexahedral grid was generated using Gridgen software. Three
typical grids denoted by Grids 1-3 are listed in Table 1. Fig. 2 shows the decay of the

calculated mean centerline velocity 〈W̃c〉/Wo and its comparison with the experimental
data [5]. It is exhibited that the result for Grid 3 compares well with the experimental
data. To make the prediction accurate, the results given below are calculated using the
parameters in Case 3 and the time step is set as 0.1d/Wo

Table 1: Validation of grid resolution.

Grid Hx×Hy×Hz Mesh size
Grid 1 30H×4d×1.8H 250×33×173
Grid 2 30H×4d×5H 273×33×200
Grid 3 30H×10d×5H 273×81×200
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3.2 Flow characteristics

The calculated variation of the mean centerline velocity 〈W̃c〉/Wo is given for flapping jet
in Fig. 3, along with measured data [5]. Also included in the figure are experimentally
and numerically determined results for stable jet without flapping motion (Wo=1.21m/s
when H/d=50). The present results based on LES simulation fit well with experimental
data. On the other hand, as shown in Fig. 3, the decay rule for flapping jet is about −0.8,
which is apparently faster than that for stable jet without flapping motion.

To further understand the flow characteristics of flapping jet, Fig. 4 illustrates the
resulting transverse distribution 〈ũ〉/Wo and longitudinal distribution 〈w̃〉/Wo at z/d=5,
15 and 20. As expected, the longitudinal velocity 〈w̃〉/Wo at the jet centerline decreases
and the width of the jet increases downstream. It is observed that the numerical results
are in agreement with the experimental data [5].
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Figure 3: Decay of mean velocity along jet centerline.
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Figure 4: The distribution of the mean transverse and longitudinal velocities.
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Figure 5: The distribution of transverse and longitudinal turbulence intensities.
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Figure 6: The amplitude of flapping-induced transverse and longitudinal velocity components.
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Figs. 5(a)-(f) are graphs showing comparisons of transverse (
√

u′2/〈W̃c〉) and longitu-

dinal (
√

w′2/〈W̃c〉) turbulence intensities between the experimental and numerical results

at z/d=5, 15 and 20. Here
√

u′2 and
√

w′2 are the root-mean-square values of the velocity
fluctuations in the transverse and longitudinal directions, respectively. Both turbulence
intensities exhibit similar behavior in the region close to the jet exit (Figs. 5(a) and (d)),
namely, dips are found at the centerline and maximum values exist in the shear layer
region. Fig. 6 shows the comparisons of amplitude of flapping-induced velocity compo-
nents between experimental and numerical results at z/d= 5, 15 and 20. It is observed
that the peak value of |ŵ1/〈W̃c〉| at each z/d is higher than that of either |û1/〈W̃c〉| or
|ŵ2/〈W̃c〉|. On the other hand, the peak value of |ŵ1/〈W̃c〉| at z/d = 15 (Fig. 6(e)) is a
little bit larger than that of the longitudinal turbulence intensity (Fig. 5(e)). This indicates
that the flapping-induced components are as important as the turbulence intensities for
flapping jet. Both the calculated results in Figs. 5 and 6 are in good agreement with the
experimental data [5].

3.3 Frequency characteristics

Fig. 7 shows the contours of instantaneous velocity magnitude normalized with the jet
exit velocity (Wo) of the flapping jet at y=0 in one-half period T/2. Note that the starting
time in Fig. 7 is arbitrary. The oscillation of surface deformation is observed to synchro-
nize with the jet flapping motion. As shown in Fig. 7(a), the jet flaps to the right maxi-
mum displacement location at t=0. At t=T/4, jet oscillates backward to the center plane
above the jet orifice as shown in Fig. 7(b). Fig. 7(c) shows that the plane jet continues
to flap towards the left of the jet orifice and reaches the left maximum displacement at
t=T/2 to complete one-half cycle of oscillation.

To obtain the frequency of the flapping motion, the power spectral densities of center-
line velocities, ũ and w̃ at z/d=28 are shown in Fig. 8. The non-dimensional frequencies,
St= f d/Wo for transverse velocity and longitudinal velocity are about 0.0019 and 0.0038,
respectively. The corresponding frequencies obtained based on laser Doppler velocime-
ter (LDV) measurements at the same position in [5] were 0.002 and 0.004, respectively.
The flapping frequencies in the present simulation are in good agreement with the ex-

Figure 7: Visualization of instantaneous non-dimensional velocity magnitude |ũ|/Wo at y=0 in one-half period.
Solid line represents the free surface.
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Figure 8: The power spectral densities of centerline velocities at z/d=28: (a) ũ, (b) w̃.

perimental measurement. Meanwhile, the frequency of longitudinal velocity oscillation
at the jet centerline is twice of the transverse oscillation. This is merely a consequence
of large amplitude jet flapping motion. It should be noted that the frequency of flapping
motion is two orders of magnitude lower than that associated with the coherent struc-
tures in a jet identified by Crow & Champagne [23]. In [23], the dimensionless frequency
of the coherent structures in self-similar region is found to be 0.3. The lower magnitude
of the Strouhal number of flapping jet suggests that the frequency is associated with a
larger motion of the jet as a whole, rather than with the coherent structure within the jet.

4 Conclusions

For a submerged turbulent plane jet in shallow water impinging vertically onto the free
surface, the jet will be self-excited into a flapping oscillation when the jet velocity, exiting
the jet orifice, exceeds a critical value. In this study, volume of fluid approach coupled
with a large eddy simulation is applied to predict the flow characteristics of the flap-
ping jet. The quantitative results for flapping jet are found to be in good agreement with
available experimental data in terms of mean velocity, flapping-induced velocity and
turbulent fluctuation. Results show that the flapping motion is a new flow pattern for
submerged turbulent plane jets with characteristic flapping frequency. The frequency of
longitudinal velocity oscillation at the jet centerline is found twice of that of the trans-
verse oscillation. Results also show that the mean centerline velocity decay is consider-
ably faster than that of the stable impinging jet without flapping motion. In addition,
the magnitudes of flapping-induced velocities have almost the same order of that of the
turbulent fluctuation, which indicates that the flapping-induced components are as im-
portant as the turbulent fluctuation for flapping jet.
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[15] J. LAROCQUE, N. RIVIÈRE, S. VINCENT, D. REUNGOAT, J. P. FAURE, J. P. HELIOT, J. P. CAL-
TAGRIONE AND M. MOREAU, Macroscopic analysis of a turbulent round liquid jet impinging on
an air/water interface in a confined medium, Phys. Fluids, 21 (2009), 065110.

[16] D. GUEYFFIER, J. LI, A. NADIM, R. SCARDOVELLI AND S. ZALESKI, Volume-of-fluid interface
tracking with smoothed surface stress method for three-dimensional flows, J. Comput. Phys., 152
(1999), pp. 423–456.

[17] S. V. PATANKAR AND D. B. SPALDING, A calculation procedure for heat, mass and momentum
transfer in three-dimensional parabolic flows, Int. J. Heat Mass Tran., 15 (1972), pp. 1787–1806.

[18] J. U. BRACKBILL, B. D. KOTHE AND C. ZEMACH, A continuum method for modeling surface
tension, J. Comput. Phys., 100 (1992), pp. 335–354.

[19] P. MAJANDER AND T. SIIKONEN, Large-eddy simulation of a round jet in a cross-flow, Int. J. Heat
Fluid Fl., 27 (2006), pp. 402–415.



856 L. Q. Zhao and J. H. Sun / Adv. Appl. Math. Mech., 5 (2013), pp. 846-856

[20] W. P. JONES AND M. WILLE, Large-eddy simulation of a plane jet in a cross-flow, Int. J. Heat
Fluid Fl., 17 (1996), pp. 296–306.

[21] B. VREMAN, B. GEURTS AND H. KUERTEN, Comparison of numerical schemes in large-eddy
simulation of the temporal mixing layer, Int. J. Numer. Meth. Fl., 22 (1996), pp. 297–311.

[22] W. C. REYNOLDS AND A. K. M. F. HUSSAIN, The mechanics of an organized wave in turbulent
shear flow, part 3: theoretical models and comparisons with experiments, J. Fluid Mech., 54 (1972),
pp. 263–288.

[23] S. C. CROW AND F. H. CHAMPAGNE, Orderly structure in jet turbulence, J. Fluid Mech., 48
(1971), pp. 547–591.


