- Journal Home
- Volume 36 - 2024
- Volume 35 - 2024
- Volume 34 - 2023
- Volume 33 - 2023
- Volume 32 - 2022
- Volume 31 - 2022
- Volume 30 - 2021
- Volume 29 - 2021
- Volume 28 - 2020
- Volume 27 - 2020
- Volume 26 - 2019
- Volume 25 - 2019
- Volume 24 - 2018
- Volume 23 - 2018
- Volume 22 - 2017
- Volume 21 - 2017
- Volume 20 - 2016
- Volume 19 - 2016
- Volume 18 - 2015
- Volume 17 - 2015
- Volume 16 - 2014
- Volume 15 - 2014
- Volume 14 - 2013
- Volume 13 - 2013
- Volume 12 - 2012
- Volume 11 - 2012
- Volume 10 - 2011
- Volume 9 - 2011
- Volume 8 - 2010
- Volume 7 - 2010
- Volume 6 - 2009
- Volume 5 - 2009
- Volume 4 - 2008
- Volume 3 - 2008
- Volume 2 - 2007
- Volume 1 - 2006
Commun. Comput. Phys., 23 (2018), pp. 230-263.
Published online: 2018-01
Cited by
- BibTex
- RIS
- TXT
In this paper, we describe how to construct a finite-difference shock-capturing method for the numerical solution of the Euler equation of gas dynamics on arbitrary two-dimensional domain Ω, possibly with moving boundary. The boundaries of the domain are assumed to be changing due to the movement of solid objects/obstacles/walls. Although the motion of the boundary could be coupled with the fluid, all of the numerical tests are performed assuming that such a motion is prescribed and independent of the fluid flow. The method is based on discretizing the equation on a regular Cartesian grid in a rectangular domain ΩR ⊃ Ω. We identify inner and ghost points. The inner points are the grid points located inside Ω, while the ghost points are the grid points that are outside Ω but have at least one neighbor inside Ω. The evolution equations for inner points data are obtained from the discretization of the governing equation, while the data at the ghost points are obtained by a suitable extrapolation of the primitive variables (density, velocities and pressure). Particular care is devoted to a proper description of the boundary conditions for both fixed and time dependent domains. Several numerical experiments are conducted to illustrate the validity of the method. We demonstrate that the second order of accuracy is numerically assessed on genuinely two-dimensional problems.
}, issn = {1991-7120}, doi = {https://doi.org/10.4208/cicp.OA-2016-0133}, url = {http://global-sci.org/intro/article_detail/cicp/10526.html} }In this paper, we describe how to construct a finite-difference shock-capturing method for the numerical solution of the Euler equation of gas dynamics on arbitrary two-dimensional domain Ω, possibly with moving boundary. The boundaries of the domain are assumed to be changing due to the movement of solid objects/obstacles/walls. Although the motion of the boundary could be coupled with the fluid, all of the numerical tests are performed assuming that such a motion is prescribed and independent of the fluid flow. The method is based on discretizing the equation on a regular Cartesian grid in a rectangular domain ΩR ⊃ Ω. We identify inner and ghost points. The inner points are the grid points located inside Ω, while the ghost points are the grid points that are outside Ω but have at least one neighbor inside Ω. The evolution equations for inner points data are obtained from the discretization of the governing equation, while the data at the ghost points are obtained by a suitable extrapolation of the primitive variables (density, velocities and pressure). Particular care is devoted to a proper description of the boundary conditions for both fixed and time dependent domains. Several numerical experiments are conducted to illustrate the validity of the method. We demonstrate that the second order of accuracy is numerically assessed on genuinely two-dimensional problems.