- Journal Home
- Volume 36 - 2024
- Volume 35 - 2024
- Volume 34 - 2023
- Volume 33 - 2023
- Volume 32 - 2022
- Volume 31 - 2022
- Volume 30 - 2021
- Volume 29 - 2021
- Volume 28 - 2020
- Volume 27 - 2020
- Volume 26 - 2019
- Volume 25 - 2019
- Volume 24 - 2018
- Volume 23 - 2018
- Volume 22 - 2017
- Volume 21 - 2017
- Volume 20 - 2016
- Volume 19 - 2016
- Volume 18 - 2015
- Volume 17 - 2015
- Volume 16 - 2014
- Volume 15 - 2014
- Volume 14 - 2013
- Volume 13 - 2013
- Volume 12 - 2012
- Volume 11 - 2012
- Volume 10 - 2011
- Volume 9 - 2011
- Volume 8 - 2010
- Volume 7 - 2010
- Volume 6 - 2009
- Volume 5 - 2009
- Volume 4 - 2008
- Volume 3 - 2008
- Volume 2 - 2007
- Volume 1 - 2006
Commun. Comput. Phys., 21 (2017), pp. 1475-1488.
Published online: 2018-04
Cited by
- BibTex
- RIS
- TXT
We propose a simple, computationally efficient scheme for an X-ray spectrum simulator. The theoretical models describing the physical processes involved are employed in our Monte Carlo software in a coherent way, paving the way for straightforward future improvements. Our results compare satisfactorily to experimental results from literature and to results from dedicated simulation software. The simplicity, excellent statistical errors, and short execution time of our code recommend it for intensive use in X-ray generation simulations.
}, issn = {1991-7120}, doi = {https://doi.org/10.4208/cicp.OA-2015-0011}, url = {http://global-sci.org/intro/article_detail/cicp/11287.html} }We propose a simple, computationally efficient scheme for an X-ray spectrum simulator. The theoretical models describing the physical processes involved are employed in our Monte Carlo software in a coherent way, paving the way for straightforward future improvements. Our results compare satisfactorily to experimental results from literature and to results from dedicated simulation software. The simplicity, excellent statistical errors, and short execution time of our code recommend it for intensive use in X-ray generation simulations.