- Journal Home
- Volume 36 - 2024
- Volume 35 - 2024
- Volume 34 - 2023
- Volume 33 - 2023
- Volume 32 - 2022
- Volume 31 - 2022
- Volume 30 - 2021
- Volume 29 - 2021
- Volume 28 - 2020
- Volume 27 - 2020
- Volume 26 - 2019
- Volume 25 - 2019
- Volume 24 - 2018
- Volume 23 - 2018
- Volume 22 - 2017
- Volume 21 - 2017
- Volume 20 - 2016
- Volume 19 - 2016
- Volume 18 - 2015
- Volume 17 - 2015
- Volume 16 - 2014
- Volume 15 - 2014
- Volume 14 - 2013
- Volume 13 - 2013
- Volume 12 - 2012
- Volume 11 - 2012
- Volume 10 - 2011
- Volume 9 - 2011
- Volume 8 - 2010
- Volume 7 - 2010
- Volume 6 - 2009
- Volume 5 - 2009
- Volume 4 - 2008
- Volume 3 - 2008
- Volume 2 - 2007
- Volume 1 - 2006
Commun. Comput. Phys., 29 (2021), pp. 420-444.
Published online: 2020-12
Cited by
- BibTex
- RIS
- TXT
In this paper, we propose a class of numerical methods based on discrete-velocity vector-BGK models for the incompressible Navier-Stokes equations. By analyzing a splitting method with Maxwell iteration, we show that the usual lattice Boltzmann discretization of the vector-BGK models provides a good numerical scheme. Moreover, we establish the stability of the numerical scheme. The stability and second-order accuracy of the scheme are validated through numerical simulations of the two-dimensional Taylor-Green vortex flows. Further numerical tests are conducted to exhibit some potential advantages of the vector-BGK models, which can be regarded as competitive alternatives of the scalar-BGK models.
}, issn = {1991-7120}, doi = {https://doi.org/10.4208/cicp.OA-2019-0192}, url = {http://global-sci.org/intro/article_detail/cicp/18473.html} }In this paper, we propose a class of numerical methods based on discrete-velocity vector-BGK models for the incompressible Navier-Stokes equations. By analyzing a splitting method with Maxwell iteration, we show that the usual lattice Boltzmann discretization of the vector-BGK models provides a good numerical scheme. Moreover, we establish the stability of the numerical scheme. The stability and second-order accuracy of the scheme are validated through numerical simulations of the two-dimensional Taylor-Green vortex flows. Further numerical tests are conducted to exhibit some potential advantages of the vector-BGK models, which can be regarded as competitive alternatives of the scalar-BGK models.