- Journal Home
- Volume 36 - 2024
- Volume 35 - 2024
- Volume 34 - 2023
- Volume 33 - 2023
- Volume 32 - 2022
- Volume 31 - 2022
- Volume 30 - 2021
- Volume 29 - 2021
- Volume 28 - 2020
- Volume 27 - 2020
- Volume 26 - 2019
- Volume 25 - 2019
- Volume 24 - 2018
- Volume 23 - 2018
- Volume 22 - 2017
- Volume 21 - 2017
- Volume 20 - 2016
- Volume 19 - 2016
- Volume 18 - 2015
- Volume 17 - 2015
- Volume 16 - 2014
- Volume 15 - 2014
- Volume 14 - 2013
- Volume 13 - 2013
- Volume 12 - 2012
- Volume 11 - 2012
- Volume 10 - 2011
- Volume 9 - 2011
- Volume 8 - 2010
- Volume 7 - 2010
- Volume 6 - 2009
- Volume 5 - 2009
- Volume 4 - 2008
- Volume 3 - 2008
- Volume 2 - 2007
- Volume 1 - 2006
Commun. Comput. Phys., 29 (2021), pp. 472-509.
Published online: 2020-12
Cited by
- BibTex
- RIS
- TXT
We study the cosmological Burgers model, as we call it, which is a nonlinear hyperbolic balance law (in one and two spatial variables) posed on an expanding or contracting background. We design a finite volume scheme that is fourth-order in time and second-order in space, and allows us to compute weak solutions containing shock waves. Our main contribution is the study of the asymptotic structure of the solutions as the time variable approaches infinity (in the expanding case) or zero (in the contracting case). We discover that a saddle competition is taking place which involves, on one hand, the geometrical effects of expanding or contracting nature and, on the other hand, the nonlinear interactions between shock waves.
}, issn = {1991-7120}, doi = {https://doi.org/10.4208/cicp.OA-2020-0033}, url = {http://global-sci.org/intro/article_detail/cicp/18480.html} }We study the cosmological Burgers model, as we call it, which is a nonlinear hyperbolic balance law (in one and two spatial variables) posed on an expanding or contracting background. We design a finite volume scheme that is fourth-order in time and second-order in space, and allows us to compute weak solutions containing shock waves. Our main contribution is the study of the asymptotic structure of the solutions as the time variable approaches infinity (in the expanding case) or zero (in the contracting case). We discover that a saddle competition is taking place which involves, on one hand, the geometrical effects of expanding or contracting nature and, on the other hand, the nonlinear interactions between shock waves.