Volume 14, Issue 2
Optimization-Based String Method for Finding Minimum Energy Path

Amit Samanta & Weinan E

Commun. Comput. Phys., 14 (2013), pp. 265-275.

Published online: 2014-08

Preview Full PDF 104 506
Export citation
  • Abstract

We present an efficient algorithm for calculating the minimum energy path (MEP) and energy barriers between local minima on a multidimensional potential energy surface (PES). Such paths play a central role in the understanding of transition pathways between metastable states. Our method relies on the original formulation of the string method [Phys. Rev. B, 66, 052301(2002)],i.e. to evolve a smooth curve along a direction normal to the curve. The algorithm works by performing minimization steps on hyperplanes normal to the curve. Therefore the problem of finding MEP on the PES is remodeled as a set of constrained minimization problems. This provides the flexibility of using minimization algorithms faster than the steepest descent method used in the simplified string method [J. Chem. Phys., 126(16), 164103 (2007)]. At the same time, it provides a more direct analog of the finite temperature string method. The applicability of the algorithm is demonstrated using various examples.

  • Keywords

  • AMS Subject Headings

  • Copyright

COPYRIGHT: © Global Science Press

  • Email address
  • References
  • Hide All
    View All

@Article{CiCP-14-265, author = {Amit Samanta and Weinan E}, title = {Optimization-Based String Method for Finding Minimum Energy Path}, journal = {Communications in Computational Physics}, year = {2014}, volume = {14}, number = {2}, pages = {265--275}, abstract = {

We present an efficient algorithm for calculating the minimum energy path (MEP) and energy barriers between local minima on a multidimensional potential energy surface (PES). Such paths play a central role in the understanding of transition pathways between metastable states. Our method relies on the original formulation of the string method [Phys. Rev. B, 66, 052301(2002)],i.e. to evolve a smooth curve along a direction normal to the curve. The algorithm works by performing minimization steps on hyperplanes normal to the curve. Therefore the problem of finding MEP on the PES is remodeled as a set of constrained minimization problems. This provides the flexibility of using minimization algorithms faster than the steepest descent method used in the simplified string method [J. Chem. Phys., 126(16), 164103 (2007)]. At the same time, it provides a more direct analog of the finite temperature string method. The applicability of the algorithm is demonstrated using various examples.

}, issn = {1991-7120}, doi = {https://doi.org/10.4208/cicp.220212.030812a}, url = {http://global-sci.org/intro/article_detail/cicp/7159.html} }
Copy to clipboard
The citation has been copied to your clipboard