Volume 14, Issue 2
On Arbitrary-Lagrangian-Eulerian One-Step WENO Schemes for Stiff Hyperbolic Balance Laws

Michael Dumbser, Ariunaa Uuriintsetseg & Olindo Zanotti

Commun. Comput. Phys., 14 (2013), pp. 301-327.

Published online: 2014-08

Preview Full PDF 132 991
Export citation
  • Abstract

In this article we present a new family of high order accurate Arbitrary Lagrangian-Eulerian one-step WENO finite volume schemes for the solution of stiff hyperbolic balance laws. High order accuracy in space is obtained with a standard WENO reconstruction algorithm and high order in time is obtained using the local space-time discontinuous Galerkin method recently proposed in [20]. In the Lagrangian framework considered here, the local space-time DG predictor is based on a weak formulation of the governing PDE on a moving space-time element. For the spacetime basis and test functions we use Lagrange interpolation polynomials defined by tensor-product Gauss-Legendre quadrature points. The moving space-time elements are mapped to a reference element using an isoparametric approach, i.e. the spacetime mapping is defined by the same basis functions as the weak solution of the PDE. We show some computational examples in one space-dimension for non-stiff and for stiff balance laws, in particular for the Euler equations of compressible gas dynamics, for the resistive relativistic MHD equations, and for the relativistic radiation hydrodynamics equations. Numerical convergence results are presented for the stiff case up to sixth order of accuracy in space and time and for the non-stiff case up to eighth order of accuracy in space and time.

  • Keywords

  • AMS Subject Headings

  • Copyright

COPYRIGHT: © Global Science Press

  • Email address
  • BibTex
  • RIS
  • TXT
@Article{CiCP-14-301, author = {}, title = {On Arbitrary-Lagrangian-Eulerian One-Step WENO Schemes for Stiff Hyperbolic Balance Laws}, journal = {Communications in Computational Physics}, year = {2014}, volume = {14}, number = {2}, pages = {301--327}, abstract = {

In this article we present a new family of high order accurate Arbitrary Lagrangian-Eulerian one-step WENO finite volume schemes for the solution of stiff hyperbolic balance laws. High order accuracy in space is obtained with a standard WENO reconstruction algorithm and high order in time is obtained using the local space-time discontinuous Galerkin method recently proposed in [20]. In the Lagrangian framework considered here, the local space-time DG predictor is based on a weak formulation of the governing PDE on a moving space-time element. For the spacetime basis and test functions we use Lagrange interpolation polynomials defined by tensor-product Gauss-Legendre quadrature points. The moving space-time elements are mapped to a reference element using an isoparametric approach, i.e. the spacetime mapping is defined by the same basis functions as the weak solution of the PDE. We show some computational examples in one space-dimension for non-stiff and for stiff balance laws, in particular for the Euler equations of compressible gas dynamics, for the resistive relativistic MHD equations, and for the relativistic radiation hydrodynamics equations. Numerical convergence results are presented for the stiff case up to sixth order of accuracy in space and time and for the non-stiff case up to eighth order of accuracy in space and time.

}, issn = {1991-7120}, doi = {https://doi.org/10.4208/cicp.310112.120912a}, url = {http://global-sci.org/intro/article_detail/cicp/7161.html} }
TY - JOUR T1 - On Arbitrary-Lagrangian-Eulerian One-Step WENO Schemes for Stiff Hyperbolic Balance Laws JO - Communications in Computational Physics VL - 2 SP - 301 EP - 327 PY - 2014 DA - 2014/08 SN - 14 DO - http://dor.org/10.4208/cicp.310112.120912a UR - https://global-sci.org/intro/article_detail/cicp/7161.html KW - AB -

In this article we present a new family of high order accurate Arbitrary Lagrangian-Eulerian one-step WENO finite volume schemes for the solution of stiff hyperbolic balance laws. High order accuracy in space is obtained with a standard WENO reconstruction algorithm and high order in time is obtained using the local space-time discontinuous Galerkin method recently proposed in [20]. In the Lagrangian framework considered here, the local space-time DG predictor is based on a weak formulation of the governing PDE on a moving space-time element. For the spacetime basis and test functions we use Lagrange interpolation polynomials defined by tensor-product Gauss-Legendre quadrature points. The moving space-time elements are mapped to a reference element using an isoparametric approach, i.e. the spacetime mapping is defined by the same basis functions as the weak solution of the PDE. We show some computational examples in one space-dimension for non-stiff and for stiff balance laws, in particular for the Euler equations of compressible gas dynamics, for the resistive relativistic MHD equations, and for the relativistic radiation hydrodynamics equations. Numerical convergence results are presented for the stiff case up to sixth order of accuracy in space and time and for the non-stiff case up to eighth order of accuracy in space and time.

Michael Dumbser, Ariunaa Uuriintsetseg & Olindo Zanotti. (2020). On Arbitrary-Lagrangian-Eulerian One-Step WENO Schemes for Stiff Hyperbolic Balance Laws. Communications in Computational Physics. 14 (2). 301-327. doi:10.4208/cicp.310112.120912a
Copy to clipboard
The citation has been copied to your clipboard