Volume 11, Issue 4
A Parallel Domain Decomposition Algorithm for Simulating Blood Flow with Incompressible Navier-Stokes Equations with Resistive Boundary Condition

Yuqi Wu & Xiao-Chuan Cai

Commun. Comput. Phys., 11 (2012), pp. 1279-1299.

Published online: 2012-04

Preview Full PDF 136 1123
Export citation
  • Abstract

We introduce and study a parallel domain decomposition algorithm for the simulation of blood flow in compliant arteries using a fully-coupled system of nonlinear partial differential equations consisting of a linear elasticity equation and the incompressible Navier-Stokes equations with a resistive outflow boundary condition. The system is discretized with a finite element method on unstructured moving meshes and solved by a Newton-Krylov algorithm preconditioned with an overlapping restricted additive Schwarz method. The resistive outflow boundary condition plays an interesting role in the accuracy of the blood flow simulation and we provide a numerical comparison of its accuracy with the standard pressure type boundary condition. We also discuss the parallel performance of the implicit domain decomposition method for solving the fully coupled nonlinear system on a supercomputer with a few hundred processors.

  • Keywords

  • AMS Subject Headings

  • Copyright

COPYRIGHT: © Global Science Press

  • Email address
  • BibTex
  • RIS
  • TXT
@Article{CiCP-11-1279, author = {}, title = {A Parallel Domain Decomposition Algorithm for Simulating Blood Flow with Incompressible Navier-Stokes Equations with Resistive Boundary Condition}, journal = {Communications in Computational Physics}, year = {2012}, volume = {11}, number = {4}, pages = {1279--1299}, abstract = {

We introduce and study a parallel domain decomposition algorithm for the simulation of blood flow in compliant arteries using a fully-coupled system of nonlinear partial differential equations consisting of a linear elasticity equation and the incompressible Navier-Stokes equations with a resistive outflow boundary condition. The system is discretized with a finite element method on unstructured moving meshes and solved by a Newton-Krylov algorithm preconditioned with an overlapping restricted additive Schwarz method. The resistive outflow boundary condition plays an interesting role in the accuracy of the blood flow simulation and we provide a numerical comparison of its accuracy with the standard pressure type boundary condition. We also discuss the parallel performance of the implicit domain decomposition method for solving the fully coupled nonlinear system on a supercomputer with a few hundred processors.

}, issn = {1991-7120}, doi = {https://doi.org/10.4208/cicp.060510.150511s}, url = {http://global-sci.org/intro/article_detail/cicp/7411.html} }
TY - JOUR T1 - A Parallel Domain Decomposition Algorithm for Simulating Blood Flow with Incompressible Navier-Stokes Equations with Resistive Boundary Condition JO - Communications in Computational Physics VL - 4 SP - 1279 EP - 1299 PY - 2012 DA - 2012/04 SN - 11 DO - http://dor.org/10.4208/cicp.060510.150511s UR - https://global-sci.org/intro/article_detail/cicp/7411.html KW - AB -

We introduce and study a parallel domain decomposition algorithm for the simulation of blood flow in compliant arteries using a fully-coupled system of nonlinear partial differential equations consisting of a linear elasticity equation and the incompressible Navier-Stokes equations with a resistive outflow boundary condition. The system is discretized with a finite element method on unstructured moving meshes and solved by a Newton-Krylov algorithm preconditioned with an overlapping restricted additive Schwarz method. The resistive outflow boundary condition plays an interesting role in the accuracy of the blood flow simulation and we provide a numerical comparison of its accuracy with the standard pressure type boundary condition. We also discuss the parallel performance of the implicit domain decomposition method for solving the fully coupled nonlinear system on a supercomputer with a few hundred processors.

Yuqi Wu & Xiao-Chuan Cai. (2020). A Parallel Domain Decomposition Algorithm for Simulating Blood Flow with Incompressible Navier-Stokes Equations with Resistive Boundary Condition. Communications in Computational Physics. 11 (4). 1279-1299. doi:10.4208/cicp.060510.150511s
Copy to clipboard
The citation has been copied to your clipboard