Volume 8, Issue 5
Application of Lattice Boltzmann Method to Simulation of Compressible Turbulent Flow

Congshan Zhuo, Chengwen Zhong, Kai Li, Shengwei Xiong, Xiaopeng Chen & Jun Cao

Commun. Comput. Phys., 8 (2010), pp. 1208-1223.

Published online: 2010-08

Preview Full PDF 129 628
Export citation
  • Abstract

The main goal of this paper is to develop the coupled double-distributionfunction (DDF) lattice Boltzmann method (LBM) for simulation of subsonic and transonic turbulent flows. In the present study, we adopt the second-order implicit-explicit (IMEX) Runge-Kutta schemes for time discretization and the Non-Oscillatory and NonFree-Parameters Dissipative (NND) finite difference scheme for space discretization. The Sutherland’s law is used for expressing the viscosity of the fluid due to considerable temperature change. Also, the Spalart-Allmaras (SA) turbulence model is incorporated in order for the turbulent flow effect to be pronounced. Numerical experiments are performed on different turbulent compressible flows around a NACA0012 airfoil with body-fitted grid. Our numerical results are found to be in good agreement with experiment data and/or other numerical solutions, demonstrating the applicability of the method presented in this study to simulations of both subsonic and transonic turbulent flows.

  • Keywords

  • AMS Subject Headings

  • Copyright

COPYRIGHT: © Global Science Press

  • Email address
  • References
  • Hide All
    View All

@Article{CiCP-8-1208, author = {Congshan Zhuo, Chengwen Zhong, Kai Li, Shengwei Xiong, Xiaopeng Chen and Jun Cao}, title = {Application of Lattice Boltzmann Method to Simulation of Compressible Turbulent Flow}, journal = {Communications in Computational Physics}, year = {2010}, volume = {8}, number = {5}, pages = {1208--1223}, abstract = {

The main goal of this paper is to develop the coupled double-distributionfunction (DDF) lattice Boltzmann method (LBM) for simulation of subsonic and transonic turbulent flows. In the present study, we adopt the second-order implicit-explicit (IMEX) Runge-Kutta schemes for time discretization and the Non-Oscillatory and NonFree-Parameters Dissipative (NND) finite difference scheme for space discretization. The Sutherland’s law is used for expressing the viscosity of the fluid due to considerable temperature change. Also, the Spalart-Allmaras (SA) turbulence model is incorporated in order for the turbulent flow effect to be pronounced. Numerical experiments are performed on different turbulent compressible flows around a NACA0012 airfoil with body-fitted grid. Our numerical results are found to be in good agreement with experiment data and/or other numerical solutions, demonstrating the applicability of the method presented in this study to simulations of both subsonic and transonic turbulent flows.

}, issn = {1991-7120}, doi = {https://doi.org/10.4208/cicp.300110.070510a}, url = {http://global-sci.org/intro/article_detail/cicp/7613.html} }
Copy to clipboard
The citation has been copied to your clipboard