Volume 4, Issue 1
A Fourth Order Numerical Method for the Primitive Equations Formulated in Mean Vorticity

Jian-Guo Liu & Cheng Wang

DOI:

Commun. Comput. Phys., 4 (2008), pp. 26-55.

Published online: 2008-04

Preview Full PDF 414 1286
Export citation
  • Abstract

A fourth-order finite difference method is proposed and studied for the primitive equations (PEs) of large-scale atmospheric and oceanic flow based on mean vorticity formulation. Since the vertical average of the horizontal velocity field is divergence-free, we can introduce mean vorticity and mean stream function which are connected by a 2-D Poisson equation. As a result, the PEs can be reformulated such that the prognostic equation for the horizontal velocity is replaced by evolutionary equations for the mean vorticity field and the vertical derivative of the horizontal velocity. The mean vorticity equation is approximated by a compact difference scheme due to the difficulty of the mean vorticity boundary condition, while fourth-order long-stencil approximations are utilized to deal with transport type equations for computational convenience. The numerical values for the total velocity field (both horizontal and vertical) are statically determined by a discrete realization of a differential equation at each fixed horizontal point. The method is highly efficient and is capable of producing highly resolved solutions at a reasonable computational cost. The full fourth-order accuracy is checked by an example of the reformulated PEs with force terms. Additionally, numerical results of a large-scale oceanic circulation are presented.

  • Keywords

  • AMS Subject Headings

  • Copyright

COPYRIGHT: © Global Science Press

  • Email address
  • BibTex
  • RIS
  • TXT
@Article{CiCP-4-26, author = {}, title = {A Fourth Order Numerical Method for the Primitive Equations Formulated in Mean Vorticity}, journal = {Communications in Computational Physics}, year = {2008}, volume = {4}, number = {1}, pages = {26--55}, abstract = {

A fourth-order finite difference method is proposed and studied for the primitive equations (PEs) of large-scale atmospheric and oceanic flow based on mean vorticity formulation. Since the vertical average of the horizontal velocity field is divergence-free, we can introduce mean vorticity and mean stream function which are connected by a 2-D Poisson equation. As a result, the PEs can be reformulated such that the prognostic equation for the horizontal velocity is replaced by evolutionary equations for the mean vorticity field and the vertical derivative of the horizontal velocity. The mean vorticity equation is approximated by a compact difference scheme due to the difficulty of the mean vorticity boundary condition, while fourth-order long-stencil approximations are utilized to deal with transport type equations for computational convenience. The numerical values for the total velocity field (both horizontal and vertical) are statically determined by a discrete realization of a differential equation at each fixed horizontal point. The method is highly efficient and is capable of producing highly resolved solutions at a reasonable computational cost. The full fourth-order accuracy is checked by an example of the reformulated PEs with force terms. Additionally, numerical results of a large-scale oceanic circulation are presented.

}, issn = {1991-7120}, doi = {https://doi.org/}, url = {http://global-sci.org/intro/article_detail/cicp/7780.html} }
TY - JOUR T1 - A Fourth Order Numerical Method for the Primitive Equations Formulated in Mean Vorticity JO - Communications in Computational Physics VL - 1 SP - 26 EP - 55 PY - 2008 DA - 2008/04 SN - 4 DO - http://doi.org/ UR - https://global-sci.org/intro/article_detail/cicp/7780.html KW - AB -

A fourth-order finite difference method is proposed and studied for the primitive equations (PEs) of large-scale atmospheric and oceanic flow based on mean vorticity formulation. Since the vertical average of the horizontal velocity field is divergence-free, we can introduce mean vorticity and mean stream function which are connected by a 2-D Poisson equation. As a result, the PEs can be reformulated such that the prognostic equation for the horizontal velocity is replaced by evolutionary equations for the mean vorticity field and the vertical derivative of the horizontal velocity. The mean vorticity equation is approximated by a compact difference scheme due to the difficulty of the mean vorticity boundary condition, while fourth-order long-stencil approximations are utilized to deal with transport type equations for computational convenience. The numerical values for the total velocity field (both horizontal and vertical) are statically determined by a discrete realization of a differential equation at each fixed horizontal point. The method is highly efficient and is capable of producing highly resolved solutions at a reasonable computational cost. The full fourth-order accuracy is checked by an example of the reformulated PEs with force terms. Additionally, numerical results of a large-scale oceanic circulation are presented.

Jian-Guo Liu & Cheng Wang. (2020). A Fourth Order Numerical Method for the Primitive Equations Formulated in Mean Vorticity. Communications in Computational Physics. 4 (1). 26-55. doi:
Copy to clipboard
The citation has been copied to your clipboard