arrow
Volume 1, Issue 1
A New Approach of High Order Well-Balanced Finite Volume WENO Schemes and Discontinuous Galerkin Methods for a Class of Hyperbolic Systems with Source Terms

Y. Xing & C.-W. Shu

Commun. Comput. Phys., 1 (2006), pp. 100-134.

Published online: 2006-01

Export citation
  • Abstract

Hyperbolic balance laws have steady state solutions in which the flux gradients are nonzero but are exactly balanced by the source terms. In our earlier work [31–33], we designed high order well-balanced schemes to a class of hyperbolic systems with separable source terms. In this paper, we present a different approach to the same purpose: designing high order well-balanced finite volume weighted essentially non-oscillatory (WENO) schemes and RungeKutta discontinuous Galerkin (RKDG) finite element methods. We make the observation that the traditional RKDG methods are capable of maintaining certain steady states exactly, if a small modification on either the initial condition or the flux is provided. The computational cost to obtain such a well balanced RKDG method is basically the same as the traditional RKDG method. The same idea can be applied to the finite volume WENO schemes. We will first describe the algorithms and prove the well balanced property for the shallow water equations, and then show that the result can be generalized to a class of other balance laws. We perform extensive one and two dimensional simulations to verify the properties of these schemes such as the exact preservation of the balance laws for certain steady state solutions, the non-oscillatory property for general solutions with discontinuities, and the genuine high order accuracy in smooth regions.

  • Keywords

  • AMS Subject Headings

  • Copyright

COPYRIGHT: © Global Science Press

  • Email address
  • BibTex
  • RIS
  • TXT
@Article{CiCP-1-100, author = {Y. Xing and C.-W. Shu}, title = {A New Approach of High Order Well-Balanced Finite Volume WENO Schemes and Discontinuous Galerkin Methods for a Class of Hyperbolic Systems with Source Terms}, journal = {Communications in Computational Physics}, year = {2006}, volume = {1}, number = {1}, pages = {100--134}, abstract = {

Hyperbolic balance laws have steady state solutions in which the flux gradients are nonzero but are exactly balanced by the source terms. In our earlier work [31–33], we designed high order well-balanced schemes to a class of hyperbolic systems with separable source terms. In this paper, we present a different approach to the same purpose: designing high order well-balanced finite volume weighted essentially non-oscillatory (WENO) schemes and RungeKutta discontinuous Galerkin (RKDG) finite element methods. We make the observation that the traditional RKDG methods are capable of maintaining certain steady states exactly, if a small modification on either the initial condition or the flux is provided. The computational cost to obtain such a well balanced RKDG method is basically the same as the traditional RKDG method. The same idea can be applied to the finite volume WENO schemes. We will first describe the algorithms and prove the well balanced property for the shallow water equations, and then show that the result can be generalized to a class of other balance laws. We perform extensive one and two dimensional simulations to verify the properties of these schemes such as the exact preservation of the balance laws for certain steady state solutions, the non-oscillatory property for general solutions with discontinuities, and the genuine high order accuracy in smooth regions.

}, issn = {1991-7120}, doi = {https://doi.org/}, url = {http://global-sci.org/intro/article_detail/cicp/7952.html} }
TY - JOUR T1 - A New Approach of High Order Well-Balanced Finite Volume WENO Schemes and Discontinuous Galerkin Methods for a Class of Hyperbolic Systems with Source Terms AU - Y. Xing & C.-W. Shu JO - Communications in Computational Physics VL - 1 SP - 100 EP - 134 PY - 2006 DA - 2006/01 SN - 1 DO - http://doi.org/ UR - https://global-sci.org/intro/article_detail/cicp/7952.html KW - AB -

Hyperbolic balance laws have steady state solutions in which the flux gradients are nonzero but are exactly balanced by the source terms. In our earlier work [31–33], we designed high order well-balanced schemes to a class of hyperbolic systems with separable source terms. In this paper, we present a different approach to the same purpose: designing high order well-balanced finite volume weighted essentially non-oscillatory (WENO) schemes and RungeKutta discontinuous Galerkin (RKDG) finite element methods. We make the observation that the traditional RKDG methods are capable of maintaining certain steady states exactly, if a small modification on either the initial condition or the flux is provided. The computational cost to obtain such a well balanced RKDG method is basically the same as the traditional RKDG method. The same idea can be applied to the finite volume WENO schemes. We will first describe the algorithms and prove the well balanced property for the shallow water equations, and then show that the result can be generalized to a class of other balance laws. We perform extensive one and two dimensional simulations to verify the properties of these schemes such as the exact preservation of the balance laws for certain steady state solutions, the non-oscillatory property for general solutions with discontinuities, and the genuine high order accuracy in smooth regions.

Y. Xing and C.-W. Shu. (2006). A New Approach of High Order Well-Balanced Finite Volume WENO Schemes and Discontinuous Galerkin Methods for a Class of Hyperbolic Systems with Source Terms. Communications in Computational Physics. 1 (1). 100-134. doi:
Copy to clipboard
The citation has been copied to your clipboard