An $L^∞$-Error Estimate for the $h$-$p$ Version Continuous Petrov-Galerkin Method for Nonlinear Initial Value Problems
East Asian J. Appl. Math., 5 (2015), pp. 301-311.
Published online: 2018-02
Cited by
Export citation
- BibTex
- RIS
- TXT
@Article{EAJAM-5-301,
author = {},
title = {An $L^∞$-Error Estimate for the $h$-$p$ Version Continuous Petrov-Galerkin Method for Nonlinear Initial Value Problems},
journal = {East Asian Journal on Applied Mathematics},
year = {2018},
volume = {5},
number = {4},
pages = {301--311},
abstract = {
The $h$-$p$ version of the continuous Petrov-Galerkin time stepping method is analyzed for nonlinear initial value problems. An $L^∞$-error bound explicit with respect to the local discretization and regularity parameters is derived. Numerical examples are provided to illustrate the theoretical results.
}, issn = {2079-7370}, doi = {https://doi.org/10.4208/eajam.310315.070815a}, url = {http://global-sci.org/intro/article_detail/eajam/10814.html} }
TY - JOUR
T1 - An $L^∞$-Error Estimate for the $h$-$p$ Version Continuous Petrov-Galerkin Method for Nonlinear Initial Value Problems
JO - East Asian Journal on Applied Mathematics
VL - 4
SP - 301
EP - 311
PY - 2018
DA - 2018/02
SN - 5
DO - http://doi.org/10.4208/eajam.310315.070815a
UR - https://global-sci.org/intro/article_detail/eajam/10814.html
KW - Initial value problems, $h-p$ version, time stepping method, continuous Petrov-Galerkin method, error bound.
AB -
The $h$-$p$ version of the continuous Petrov-Galerkin time stepping method is analyzed for nonlinear initial value problems. An $L^∞$-error bound explicit with respect to the local discretization and regularity parameters is derived. Numerical examples are provided to illustrate the theoretical results.
Lijun Yi. (1970). An $L^∞$-Error Estimate for the $h$-$p$ Version Continuous Petrov-Galerkin Method for Nonlinear Initial Value Problems.
East Asian Journal on Applied Mathematics. 5 (4).
301-311.
doi:10.4208/eajam.310315.070815a
Copy to clipboard