TY - JOUR T1 - Large Eddy Simulation of the Vortex-Induced Vibration of a Circular Cylinder by Using the Local Domain-Free Discretization Method AU - Pu , Tianmei AU - Zhang , Yang AU - Zhou , Chunhua JO - Advances in Applied Mathematics and Mechanics VL - 6 SP - 1456 EP - 1476 PY - 2022 DA - 2022/08 SN - 14 DO - http://doi.org/10.4208/aamm.OA-2021-0199 UR - https://global-sci.org/intro/article_detail/aamm/20855.html KW - Immersed boundary method, domain-free discretization, large-eddy simulation, fluid-structure interaction, vortex-induced vibration. AB -

In this paper, the local domain-free discretization (DFD) method is extended to large eddy simulation (LES) of fluid-structure interaction and the vortex-induced vibration (VIV) of an elastically mounted rigid circular cylinder, which is held in the middle of a straight channel, is numerically investigated. The wall model based on the simplified turbulent boundary layer equations is employed to alleviate the requirement of mesh resolution in the near-wall region. The ability of the method for fluid-structure interaction is demonstrated by simulating flows over a circular cylinder undergoing VIV. The cylinder is neutrally buoyant with a reduced mass $m^∗ =11$ and has a low damping ratio $ζ =0.001.$ The numerical experiment of the VIV of a cylinder in an unbounded flow shows that the present LES-DFD method is more accurate and reliable than the referenced RANS and DES methods. For the cylinder in the middle of a straight channel, the effect of the channel height $(d^∗ = d/D)$ is investigated. The variations of the response amplitude, vortex-shedding pattern and the length of the induced separation zone in the channel boundary layers with the channel height are presented.