- Journal Home
- Volume 22 - 2025
- Volume 21 - 2024
- Volume 20 - 2023
- Volume 19 - 2022
- Volume 18 - 2021
- Volume 17 - 2020
- Volume 16 - 2019
- Volume 15 - 2018
- Volume 14 - 2017
- Volume 13 - 2016
- Volume 12 - 2015
- Volume 11 - 2014
- Volume 10 - 2013
- Volume 9 - 2012
- Volume 8 - 2011
- Volume 7 - 2010
- Volume 6 - 2009
- Volume 5 - 2008
- Volume 4 - 2007
- Volume 3 - 2006
- Volume 2 - 2005
- Volume 1 - 2004
Int. J. Numer. Anal. Mod., 21 (2024), pp. 181-200.
Published online: 2024-04
Cited by
- BibTex
- RIS
- TXT
A solenoidal basis is constructed to compute velocities using a certain finite element method for the Stokes problem. The method is conforming, with piecewise linear velocity and piecewise constant pressure on the Powell-Sabin split of a triangulation. Inhomogeneous Dirichlet conditions are supported by constructing an interpolating operator into the solenoidal velocity space. The solenoidal basis reduces the problem size and eliminates the pressure variable from the linear system for the velocity. A basis of the pressure space is also constructed that can be used to compute the pressure after the velocity, if it is desired to compute the pressure. All basis functions have local support and lead to sparse linear systems. The basis construction is confirmed through rigorous analysis. Velocity and pressure system matrices are both symmetric, positive definite, which can be exploited to solve their corresponding linear systems. Significant efficiency gains over the usual saddle-point formulation are demonstrated computationally.
}, issn = {2617-8710}, doi = {https://doi.org/10.4208/ijnam2024-1007}, url = {http://global-sci.org/intro/article_detail/ijnam/23023.html} }A solenoidal basis is constructed to compute velocities using a certain finite element method for the Stokes problem. The method is conforming, with piecewise linear velocity and piecewise constant pressure on the Powell-Sabin split of a triangulation. Inhomogeneous Dirichlet conditions are supported by constructing an interpolating operator into the solenoidal velocity space. The solenoidal basis reduces the problem size and eliminates the pressure variable from the linear system for the velocity. A basis of the pressure space is also constructed that can be used to compute the pressure after the velocity, if it is desired to compute the pressure. All basis functions have local support and lead to sparse linear systems. The basis construction is confirmed through rigorous analysis. Velocity and pressure system matrices are both symmetric, positive definite, which can be exploited to solve their corresponding linear systems. Significant efficiency gains over the usual saddle-point formulation are demonstrated computationally.