- Journal Home
- Volume 21 - 2024
- Volume 20 - 2023
- Volume 19 - 2022
- Volume 18 - 2021
- Volume 17 - 2020
- Volume 16 - 2019
- Volume 15 - 2018
- Volume 14 - 2017
- Volume 13 - 2016
- Volume 12 - 2015
- Volume 11 - 2014
- Volume 10 - 2013
- Volume 9 - 2012
- Volume 8 - 2011
- Volume 7 - 2010
- Volume 6 - 2009
- Volume 5 - 2008
- Volume 4 - 2007
- Volume 3 - 2006
- Volume 2 - 2005
- Volume 1 - 2004
Cited by
- BibTex
- RIS
- TXT
The finite element dual singular function method [FE-DSFM] has been constructed and analyzed accuracy by Z. Cai and S. Kim to solve the Laplace equation on a polygonal domain with one reentrant corner. In this paper, we impose FE-DSFM to solve the Stokes equations via the mixed finite element method. To do this, we compute the singular and the dual singular functions analytically at a non-convex corner. We prove well-posedness by using the contraction mapping theorem and then estimate errors of the algorithm. We obtain optimal accuracy $O(h)$ for velocity in $\rm{H}^1(Ω)$ and pressure in $L^2(Ω)$, but we are able to prove only $O(h^{1+\lambda})$ error bounds for velocity in $\rm{L}^2(\Omega)$ and stress intensity factor, where $\lambda$ is the eigenvalue (solution of (4)). However, we get optimal accuracy results in numerical experiments.
}, issn = {2617-8710}, doi = {https://doi.org/}, url = {http://global-sci.org/intro/article_detail/ijnam/500.html} }The finite element dual singular function method [FE-DSFM] has been constructed and analyzed accuracy by Z. Cai and S. Kim to solve the Laplace equation on a polygonal domain with one reentrant corner. In this paper, we impose FE-DSFM to solve the Stokes equations via the mixed finite element method. To do this, we compute the singular and the dual singular functions analytically at a non-convex corner. We prove well-posedness by using the contraction mapping theorem and then estimate errors of the algorithm. We obtain optimal accuracy $O(h)$ for velocity in $\rm{H}^1(Ω)$ and pressure in $L^2(Ω)$, but we are able to prove only $O(h^{1+\lambda})$ error bounds for velocity in $\rm{L}^2(\Omega)$ and stress intensity factor, where $\lambda$ is the eigenvalue (solution of (4)). However, we get optimal accuracy results in numerical experiments.