- Journal Home
- Volume 22 - 2025
- Volume 21 - 2024
- Volume 20 - 2023
- Volume 19 - 2022
- Volume 18 - 2021
- Volume 17 - 2020
- Volume 16 - 2019
- Volume 15 - 2018
- Volume 14 - 2017
- Volume 13 - 2016
- Volume 12 - 2015
- Volume 11 - 2014
- Volume 10 - 2013
- Volume 9 - 2012
- Volume 8 - 2011
- Volume 7 - 2010
- Volume 6 - 2009
- Volume 5 - 2008
- Volume 4 - 2007
- Volume 3 - 2006
- Volume 2 - 2005
- Volume 1 - 2004
Cited by
- BibTex
- RIS
- TXT
We consider the coupling of compressible and nearly incompressible materials within the framework of mortar methods. Taking into account the locking effect, we use a suitable discretization for the nearly incompressible material and work with a standard conforming discretization elsewhere. The coupling of different discretization schemes in different subdomains are handled by flexible mortar techniques. A priori error analysis is carried out for the coupled problem, and several numerical examples are presented. Using dual Lagrange multipliers, the Lagrange multipliers can easily be eliminated by local static condensation.
}, issn = {2617-8710}, doi = {https://doi.org/}, url = {http://global-sci.org/intro/article_detail/ijnam/762.html} }We consider the coupling of compressible and nearly incompressible materials within the framework of mortar methods. Taking into account the locking effect, we use a suitable discretization for the nearly incompressible material and work with a standard conforming discretization elsewhere. The coupling of different discretization schemes in different subdomains are handled by flexible mortar techniques. A priori error analysis is carried out for the coupled problem, and several numerical examples are presented. Using dual Lagrange multipliers, the Lagrange multipliers can easily be eliminated by local static condensation.