- Journal Home
- Volume 22 - 2025
- Volume 21 - 2024
- Volume 20 - 2023
- Volume 19 - 2022
- Volume 18 - 2021
- Volume 17 - 2020
- Volume 16 - 2019
- Volume 15 - 2018
- Volume 14 - 2017
- Volume 13 - 2016
- Volume 12 - 2015
- Volume 11 - 2014
- Volume 10 - 2013
- Volume 9 - 2012
- Volume 8 - 2011
- Volume 7 - 2010
- Volume 6 - 2009
- Volume 5 - 2008
- Volume 4 - 2007
- Volume 3 - 2006
- Volume 2 - 2005
- Volume 1 - 2004
Cited by
- BibTex
- RIS
- TXT
Simulations of cardiac defibrillation are associated with considerable numerical challenges. The cell models have traditionally been discretized by first order explicit schemes, which are associated with severe stability issues. The sharp transition layers in the solution call for stable and efficient solvers. We propose a second order accurate numerical method for the Luo-Rudy phase 1 model of electrical activity in a cardiac cell, which provides sequential update of each governing ODE. An a priori estimate for the scheme is given, showing that the bounds of the variables typically observed during electric shocks constitute an invariant region for the system, regardless of the time step chosen. Thus the choice of time step is left as a matter of accuracy. Conclusively, we demonstrate the theoretical result by some numerical examples, illustrating second order convergence for the Luo-Rudy 1 model.
}, issn = {2617-8710}, doi = {https://doi.org/}, url = {http://global-sci.org/intro/article_detail/ijnam/788.html} }Simulations of cardiac defibrillation are associated with considerable numerical challenges. The cell models have traditionally been discretized by first order explicit schemes, which are associated with severe stability issues. The sharp transition layers in the solution call for stable and efficient solvers. We propose a second order accurate numerical method for the Luo-Rudy phase 1 model of electrical activity in a cardiac cell, which provides sequential update of each governing ODE. An a priori estimate for the scheme is given, showing that the bounds of the variables typically observed during electric shocks constitute an invariant region for the system, regardless of the time step chosen. Thus the choice of time step is left as a matter of accuracy. Conclusively, we demonstrate the theoretical result by some numerical examples, illustrating second order convergence for the Luo-Rudy 1 model.