- Journal Home
- Volume 42 - 2024
- Volume 41 - 2023
- Volume 40 - 2022
- Volume 39 - 2021
- Volume 38 - 2020
- Volume 37 - 2019
- Volume 36 - 2018
- Volume 35 - 2017
- Volume 34 - 2016
- Volume 33 - 2015
- Volume 32 - 2014
- Volume 31 - 2013
- Volume 30 - 2012
- Volume 29 - 2011
- Volume 28 - 2010
- Volume 27 - 2009
- Volume 26 - 2008
- Volume 25 - 2007
- Volume 24 - 2006
- Volume 23 - 2005
- Volume 22 - 2004
- Volume 21 - 2003
- Volume 20 - 2002
- Volume 19 - 2001
- Volume 18 - 2000
- Volume 17 - 1999
- Volume 16 - 1998
- Volume 15 - 1997
- Volume 14 - 1996
- Volume 13 - 1995
- Volume 12 - 1994
- Volume 11 - 1993
- Volume 10 - 1992
- Volume 9 - 1991
- Volume 8 - 1990
- Volume 7 - 1989
- Volume 6 - 1988
- Volume 5 - 1987
- Volume 4 - 1986
- Volume 3 - 1985
- Volume 2 - 1984
- Volume 1 - 1983
Cited by
- BibTex
- RIS
- TXT
We propose a parallel stochastic Newton method (PSN) for minimizing unconstrained smooth convex functions. We analyze the method in the strongly convex case, and give conditions under which acceleration can be expected when compared to its serial counterpart. We show how PSN can be applied to the large quadratic function minimization in general, and empirical risk minimization problems. We demonstrate the practical efficiency of the method through numerical experiments and models of simple matrix classes.
}, issn = {1991-7139}, doi = {https://doi.org/10.4208/jcm.1708-m2017-0113}, url = {http://global-sci.org/intro/article_detail/jcm/12268.html} }We propose a parallel stochastic Newton method (PSN) for minimizing unconstrained smooth convex functions. We analyze the method in the strongly convex case, and give conditions under which acceleration can be expected when compared to its serial counterpart. We show how PSN can be applied to the large quadratic function minimization in general, and empirical risk minimization problems. We demonstrate the practical efficiency of the method through numerical experiments and models of simple matrix classes.