J. Nonl. Mod. Anal., 3 (2021), pp. 131-144.
Published online: 2021-04
[An open-access article; the PDF is free to any online user.]
Cited by
- BibTex
- RIS
- TXT
In this paper, we first study the Schrödinger operators with the following weighted function $\sum\limits_{i=1}^n p_i \delta(x - a_i)$, which is actually a finite linear combination of Dirac-Delta functions, and then discuss the same operator equipped with the same kind of potential function. With the aid of the boundary conditions, all possible eigenvalues and eigenfunctions of the self-adjoint Schrödinger operator are investigated. Furthermore, as a practical application, the spectrum distribution of such a Dirac-Delta type Schrödinger operator either weighted or potential is well applied to the remarkable integrable Camassa-Holm (CH) equation.
}, issn = {2562-2862}, doi = {https://doi.org/10.12150/jnma.2021.131}, url = {http://global-sci.org/intro/article_detail/jnma/18782.html} }In this paper, we first study the Schrödinger operators with the following weighted function $\sum\limits_{i=1}^n p_i \delta(x - a_i)$, which is actually a finite linear combination of Dirac-Delta functions, and then discuss the same operator equipped with the same kind of potential function. With the aid of the boundary conditions, all possible eigenvalues and eigenfunctions of the self-adjoint Schrödinger operator are investigated. Furthermore, as a practical application, the spectrum distribution of such a Dirac-Delta type Schrödinger operator either weighted or potential is well applied to the remarkable integrable Camassa-Holm (CH) equation.