J. Nonl. Mod. Anal., 4 (2022), pp. 371-391.
Published online: 2022-06
[An open-access article; the PDF is free to any online user.]
Cited by
- BibTex
- RIS
- TXT
We consider a stochastically forced epidemic model with medical-resource constraints. In the deterministic case, the model can exhibit two type bistability phenomena, i.e., bistability between an endemic equilibrium or an interior limit cycle and the disease-free equilibrium, which means that whether the disease can persist in the population is sensitive to the initial values of the model. In the stochastic case, the phenomena of noise-induced state transitions between two stochastic attractors occur. Namely, under the random disturbances, the stochastic trajectory near the endemic equilibrium or the interior limit cycle will approach to the disease-free equilibrium. Besides, based on the stochastic sensitivity function method, we analyze the dispersion of random states in stochastic attractors and construct the confidence domains (confidence ellipse or confidence band) to estimate the threshold value of the intensity for noise caused transition from the endemic to disease eradication.
}, issn = {2562-2862}, doi = {https://doi.org/10.12150/jnma.2022.371}, url = {http://global-sci.org/intro/article_detail/jnma/20713.html} }We consider a stochastically forced epidemic model with medical-resource constraints. In the deterministic case, the model can exhibit two type bistability phenomena, i.e., bistability between an endemic equilibrium or an interior limit cycle and the disease-free equilibrium, which means that whether the disease can persist in the population is sensitive to the initial values of the model. In the stochastic case, the phenomena of noise-induced state transitions between two stochastic attractors occur. Namely, under the random disturbances, the stochastic trajectory near the endemic equilibrium or the interior limit cycle will approach to the disease-free equilibrium. Besides, based on the stochastic sensitivity function method, we analyze the dispersion of random states in stochastic attractors and construct the confidence domains (confidence ellipse or confidence band) to estimate the threshold value of the intensity for noise caused transition from the endemic to disease eradication.