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MIXED FINITE VOLUME METHOD FOR ELLIPTIC PROBLEMS

ON NON-MATCHING MULTI-BLOCK TRIANGULAR GRIDS

YANNI GAO, JUNLIANG LV∗, AND LANHUI ZHANG

Abstract. This article presents a mixed finite volume method for solving second-order elliptic
equations with Neumann boundary conditions. The computational domains can be decomposed
into non-overlapping sub-domains or blocks and the diffusion tensors may be discontinuous across
the sub-domain boundaries. We define a conforming triangular partition on each sub-domains
independently, and employ the standard mixed finite volume method within each sub-domain.
On the interfaces between different sun-domains, the grids are non-matching. The Robin type
boundary conditions are imposed on the non-matching interfaces to enhance the continuity of the
pressure and flux. Both the solvability and the first order rate of convergence for this numerical
scheme are rigorously proved. Numerical experiments are provided to illustrate the error behavior
of this scheme and confirm our theoretical results.
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1. Introduction

Let Ω be a bounded polygonal domain in R
2 with the boundary ∂Ω. Consider

the following single phase flow model for the pressure p and the velocity u:

u = −K(x)(∇p− β(x)p) in Ω,(1)

c(x)p+∇ · u = f in Ω,(2)

u · n = 0 on ∂Ω.(3)

Here n is the outward unit normal vector with respect to ∂Ω, the coefficient K(x) is
a symmetric and uniformly positive-definite matrix representing the permeability
divided by the viscosity, β(x) is a vector representing gravity effect, c(x) > 0
represents the compressibility of the medium, and f is a source or sink term. In
many applications, due to the complexity of the domain geometry or the solution
itself, the computational domain Ω is required to be a multi-block domain with
grids defined independently on each block. Just as introduced in [19, 20], there are
two such examples. One is the modeling of flow in a porous medium with known
faults [24], in which material properties would have incontinuity. Another one is
the modeling of wells, whose solutions are more desired to be carried out on locally
refined grids.

In the numerical simulation of (1)-(3) defined on a multi-block domain, each
block is independently covered by a local grid and the standard mixed finite ele-
ment(MFE) methods could be used within each block. However, since grids do not
match on the interfaces between different blocks, the normal trace of the velocity
space is no longer continuous across these interfaces. In order to overcome this
obstacle, several efficient techniques have been developed to enhance the continuity
of the pressure and flux. In [20], the MFE method with mortar elements is pre-
sented, in which a mortar finite element space is introduced to approximate the
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trace of the pressure on the non-matching interfaces, and a continuity condition
of the flux is also imposed weakly. This method is optimally convergent if the
mortar finite element space has one order higher approximability than the normal
trace of the velocity space. In [19], the authors constructed a non-mortar MFE
method by imposing Robin type conditions on the non-matching interfaces to unite
the sub-domain problems. This method could achieve optimal convergent rate for
both the pressure and the velocity, and is more convenient for locally refined grids.
Both forementioned methods have to solve interface problems resulting from the
additional flux-matching conditions. In [10], the authors studied an alternative ap-
proach based on enhancing the velocity space along the sub-domain interfaces. The
characteristic of this construction is that it yields a flux-continuous velocity space,
and thus no interface problems are required to be solved. These three methods
have their respective advantages and have been extended to other different physical
and numerical models. Readers are referred to [14, 1, 3, 18, 21, 5] and references
therein for their recent developments.

Finite volume(FV) methods have been one class of the most commonly used nu-
merical methods for solving partial differential equations in practice, because they
can keep a certain conservation property and have flexibility in handling compli-
cated domain geometries and boundary conditions. On the other hand, it could
lead to a better numerical treatment on the velocity by discretizing the equations
(1)-(3) directly than just computing it from the pressure. Motivated by these
reasons, mixed finite volume(MFV) methods have been proposed and analyzed in
[15, 16, 17, 6, 25, 7, 8, 9, 22, 2, 23]. However, their construction and corresponding
theoretical analysis are all executed on matching grids. In this article we consider
MFV approximation of equations (1)-(3) on non-matching triangular grids. Assume
that Ω is a union of non-overlapping polygonal blocks, each covered by a conform-
ing triangular grid. On each block, we employ the standard MFV method based
on the lowest order Raviart-Thomas space to discretize equations (1)-(3). On the
interfaces between different blocks we use the same technique as that investigated
in [19] to keep the continuity of the pressure and flux. The Robin type condi-
tions are imposed weakly on the non-matching interfaces by using double-valued
Lagrange multipliers to approximate the trace of the pressure. Since the normal
components of the velocity space are no longer continuous across the non-matching
interfaces and the term related to Lagrange multipliers also needs to be estimated,
it is difficult to extend the theoretical analysis used in the standard MFV method
on matching grids to this numerical scheme. Under proper assumptions about the
regularity of exact solutions, we give the solvability and convergence analysis of
this MFV method on non-matching grids by the main ideas employed in [19]. But
some details are quite different.

The rest of the paper is organized as follows. In the next section we introduce
some necessary notations, assumptions and definitions. Section 3 is devoted to
formulating the MFV method on non-matching multi-block triangular grids and
presenting several lemmas which are indispensable in the theoretical analysis. Then,
we prove error estimates in Section 4. In Section 5, several numerical examples are
presented to test the computational efficiency of this numerical scheme and confirm
our theoretical results. Finally, we draw a brief conclusion in Section 6.

2. Preliminaries

We assume that Ω can be divided into non-overlapping sub-domains Ωi, i =
1, 2, · · · , n, i.e. Ω =

⋃n
i=1 Ωi. Let Γi = ∂Ωi\∂Ω, Γij = ∂Ωi ∩ ∂Ωj and Γ =

⋃n
i=1 Γi


