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Abstract. In the first part, we study the convergence of discrete solutions to split-
ting schemes for two-phase flow with different mass densities suggested in [Guillen-
Gonzalez, Tierra, J.Comput.Math. (6)2014]. They have been formulated for the diffuse
interface model in [Abels, Garcke, Grün, M3AS, 2012, DOI:10.1142/S0218202511500138]
which is consistent with thermodynamics. Our technique covers various discretization
methods for phase-field energies, ranging from convex-concave splitting to difference
quotient approaches for the double-well potential. In the second part of the paper, nu-
merical experiments are presented in two space dimensions to identify discretizations
of Cahn-Hilliard energies which are ϕ-stable and which do not reduce the acceleration
of falling droplets. Finally, 3d simulations in axial symmetric geometries are shown to
underline even more the full practicality of the approach.
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1 Introduction

In this paper, we are concerned with aspects of numerical analysis and practical compu-
tation related to the diffuse interface model for two-phase flow of incompressible, viscous
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fluids with different mass densities proposed in [1]. It reads as follows.

ρ̄(ϕ)∂tv+

((

ρ̄(ϕ)v+
∂ρ̄(ϕ)

∂ϕ
j

)

·∇

)

v−∇·(2η(ϕ)Dv)+∇p=µ∇ϕ+kgrav, (1.1a)

∂t ϕ+v·∇ϕ−∇·(M(ϕ)∇µ)=0, (1.1b)

µ=σ
(

−ε∆ϕ+ 1
ε F′(ϕ)

)

, (1.1c)

∇·v=0 in Ω×(0,T). (1.1d)

Since we wish to take contact angle hysteresis into account, too, the following boundary
conditions are chosen.

σ
∂ϕ

∂n
=−γ′

LS−α∂t ϕ on ∂Ω×(0,T), (1.2a)

∂

∂n
µ≡0 on ∂Ω×(0,T), (1.2b)

v≡0 on ∂Ω×(0,T). (1.2c)

Here, γLS(φ) interpolates between the liquid-solid interfacial energies in the pure
phases, and α ≥ 0 is the coefficient related to energy dissipation caused by contact line
motion. The parameter σ is the surface tension coefficient, which is assumed to be σ=1
in this paper. Note that this approach is inspired by the ideas of [22] where the relation-
ship to contact angle hysteresis is explained. In particular, if γLS ≡ const. and α≡ 0, the
system prefers a contact angle θ of 90 degrees, as (1.2a) is a phase-field approximation
of Young’s law cosθ = (γLS(−1)−γLS(1))/σ, see [22]. Note that system (1.1) couples a
hydrodynamic momentum equation with a Cahn-Hilliard type phase-field equation. F
is a double-well potential with minima in ±1 – representing the pure phases ϕ ≡±1.
The term µ stands for the so called chemical potential, and the order parameter ϕ stands
for the difference of the volume fractions u2−u1 where ui(x,t) := ρi(x,t)/ρ̃i with ρ̃i the
specific (constant) density of fluid i in a unmixed setting. The parameter ε controls the
width of the interface region. For the ease of notation we set ε=1. Denoting the individ-
ual velocities by vi, i = 1,2, we write v := u1v1+u2v2 for the volume averaged velocity.
Assuming ρ̃2≥ ρ̃1, the density of the total mass ρ̄(ϕ) is given by

ρ̄(ϕ)=
ρ̃2+ ρ̃1

2
+

ρ̃2− ρ̃1

2
ϕ, (1.3)

and Dv denotes the symmetrized gradient. The term kgrav stands for the density of ex-
ternal volume forces. Finally, the flux j is defined by j :=−M(ϕ)∇µ where M(ϕ) is the
mobility.

It is straightforward to show that the physical energy†

E (v,ϕ) :=
1

2

∫

Ω
ρ̄(ϕ)|v|2+

ε
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∫
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|∇ϕ|2+
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∫
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F(ϕ)+

∫

∂Ω
γLS(ϕ) (1.4)

†Note that later in the paper, we will consider regularizations ρ(·) of ρ̄(·). Consistently, we will denote the
corresponding energy by E(v,ϕ).


