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Abstract. The focus of this article is to present the projected finite element method
for solving systems of reaction-diffusion equations on evolving closed spheroidal sur-
faces with applications to pattern formation. The advantages of the projected finite
element method are that it is easy to implement and that it provides a conforming fi-
nite element discretization which is “logically” rectangular. Furthermore, the surface
is not approximated but described exactly through the projection. The surface evo-
lution law is incorporated into the projection operator resulting in a time-dependent
operator. The time-dependent projection operator is composed of the radial projection
with a Lipschitz continuous mapping. The projection operator is used to generate the
surface mesh whose connectivity remains constant during the evolution of the surface.
To illustrate the methodology several numerical experiments are exhibited for differ-
ent surface evolution laws such as uniform isotropic (linear, logistic and exponential),
anisotropic, and concentration-driven. This numerical methodology allows us to study
new reaction-kinetics that only give rise to patterning in the presence of surface evolu-
tion such as the activator-activator and short-range inhibition; long-range activation.
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1 Introduction

Currently, there is a surge in modelling parabolic partial differential equations on evolv-
ing arbitrary complex surfaces [1, 8, 9, 12–14, 24, 25] partly due to the advances in tech-
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niques for obtaining 3-dimensional datasets in experimental sciences [19]. Typical exam-
ples include molecular analysis of the fungus rice blast in plant biology [5], biochemical
and biomechanical analysis of cell migration in cell motility [2, 35] and pattern forma-
tion in developmental biology [20, 23, 30]. In most cases, molecular species resident on
the cell-surface are observed to react and diffuse and in doing so, induce surface evo-
lution. Mathematical modelling of such processes results in highly nonlinear systems
of reaction-diffusions equations posed on time-dependent closed (and sometimes open)
surfaces or manifolds. The theory of reaction-diffusion is well-studied on stationary pla-
nar domains but not so much is known of the models on evolving planar domains and
surfaces. Due to the nature of the nonlinearities, closed form solutions are not read-
ily available. Furthermore, including surface evolution adds extra complexities to the
model system in that non-autonomous systems of parabolic partial differential equa-
tions are obtained which render redundant standard theoretical analytical techniques
such as the linear stability theory for analysing the model dynamics close to the bifur-
cation points [17, 27]. Hence it is critical to develop new numerical methodologies and
techniques for solving, robustly and efficiently, systems of non-autonomous nonlinear
parabolic partial differential equations on complex evolving surfaces.

To-date, there has been an increase in the development of numerical methods for
approximating solutions of partial differential equations posed on evolving surfaces. Ex-
amples include (but are not limited to) the method of lines [4], evolving surface finite
element methods on triangulated surfaces [1, 8, 9, 12, 13], implicit finite element meth-
ods using level set descriptions of the surfaces [11, 12, 33, 37], diffuse interface methods
of which phase-fields are an example [3, 6, 14], particle methods using level set descrip-
tions of the surface [7, 16, 18, 22] and closest-point methods [24, 25]. In all these methods
the continuous surface is approximated by a discrete surface thereby committing a geo-
metrical error. A key issue is how the surface description is encoded into the numerical
method. For the evolving surface finite elements, the surface is approximated by a tri-
angulated surface. The geometrical description of the surface is encoded through the
knowledge of the vertices of the triangulation. A geometrical error is committed in car-
rying out the surface triangulation [13]. On the other hand, numerical methods based on
implicit surfaces require the knowledge of the level set function that defines the surface
geometry [13]. A key difference between these methods and the projected finite element
method (PFEM) is that the latter does not commit geometric errors since the surface is
not approximated but described exactly through the projection. The surface evolution is
embedded into the projection operator.

The PFEM proposed in this article is inspired by the radially projected finite ele-
ment method which was used to compute approximate numerical solutions for partial
differential equations on stationary spheroidal surfaces such as spheres, ellipsoids, and
tori [31, 38, 39]. The PFEM gives a geometrically exact discretization of spheroidal sur-
faces (the geometry is not approximated, but represented exactly) and is attractive for
numerical simulations since the resulting finite element discretization is conforming and
is “logically rectangular.” The PFEM is easy to implement and incorporate into existing


