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Abstract. In this paper, a simplified lattice Boltzmann method (SLBM) without evo-
lution of the distribution function is developed for simulating incompressible vis-
cous flows. This method is developed from the application of fractional step tech-
nique to the macroscopic Navier-Stokes (N-S) equations recovered from lattice Boltz-
mann equation by using Chapman-Enskog expansion analysis. In SLBM, the equi-
librium distribution function is calculated from the macroscopic variables, while the
non-equilibrium distribution function is simply evaluated from the difference of two
equilibrium distribution functions. Therefore, SLBM tracks the evolution of the macro-
scopic variables rather than the distribution function. As a result, lower virtual mem-
ories are required and physical boundary conditions could be directly implemented.
Through numerical test at high Reynolds number, the method shows very nice per-
formance in numerical stability. An accuracy test for the 2D Taylor-Green flow shows
that SLBM has the second-order of accuracy in space. More benchmark tests, including
the Couette flow, the Poiseuille flow as well as the 2D lid-driven cavity flow, are con-
ducted to further validate the present method; and the simulation results are in good
agreement with available data in literatures.
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1 Introduction

Lattice Boltzmann Method (LBM) [1,2] is becoming a popular method in the field of Com-
putational Fluid Dynamics (CFD). In the last few decades, LBM was being developed
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continuously [3–14], and has been widely applied in various kinds of fluid problems,
including micro flows, thermal flows, multiphase flows and other problems [15–22].

Different from the conventional CFD methods based on the macroscopic Navier-
Stokes (N-S) equations [23–27], LBM is a mesoscopic method rooted from the lattice
Boltzmann equation (LBE) [28–31]. In LBM, the time marching is reflected in the evo-
lution of the density distribution function. The macroscopic physical properties, such
as the density and the velocity, are obtained from the conservation laws on a particular
grid point. The evolution process of the density distribution function is realized by two
steps: streaming and collision. Specifically, the streaming process is to distribute the ef-
fects from a local point to the surrounding points; and the collision process describes the
combination effects on a local point. LBM is welcome by the CFD researchers due to sev-
eral nice features. The first and also the most important feature is its kinetic nature. The
simple streaming and collision processes in LBM are able to capture the complex nonlin-
ear phenomenon in physics, and at the same time, avoid the manipulation of complex
nonlinear terms or high order derivatives in macroscopic N-S equations. Secondly, LBM
solves a set of algebraic equations; and no differential equations are involved, which
makes the computation more straightforward and brief. In addition, being an explicit
scheme, LBM facilitates the practical coding and parallelization, which makes it suitable
to solve engineering problems. Apart from the above appealing characteristics, LBM
also suffers from a number of drawbacks. Firstly, due to lattice uniformity, the standard
LBM is only applicable on uniform mesh. To apply LBM on non-uniform mesh or for
complex geometry, additional computational efforts are needed. The second drawback is
that the standard LBM requires more virtual memories compared with the N-S solvers.
It is needed to store the distribution functions along all lattice velocity directions at all
grid points. Such storage requirement may be a heavy burden for large-scale problems,
especially for 3D problems. Finally, it is also inconvenient for the standard LBM to imple-
ment the physical boundary conditions. The boundary conditions for the velocity and/or
for the pressure need to be transformed into the conditions for the density distribution
functions. Therefore, for problems with complex boundaries, it is not a simple task to
implement appropriate boundary conditions.

To overcome the drawbacks of LBM, which is applied globally in the whole flow do-
main, a lattice Boltzmann flux solver (LBFS) [32] was recently developed, which only
applies LBM locally. In LBFS, the Finite Volume Method (FVM) is applied to solve the
macroscopic N-S equations, while the lattice Boltzmann method is implemented locally
at each cell interface to calculate the fluxes. Based on the Chapman-Enskog (C-E) ex-
pansion analysis, the macroscopic flux can be evaluated from the LBE solutions. One
of important contributions in LBFS is to approximate the non-equilibrium distribution
function by the difference of two equilibrium distribution functions at two different lo-
cations and time levels. This way is much simpler than the conventional treatments with
various expansion terms. Within the LBFS, only macroscopic flow variables are stored,
and the physical boundary conditions can be easily implemented. At the same time, by
introducing the LBM solver on the interface, the approximation of the high-order nonlin-


