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Abstract. This paper gives analysis of a semi-discrete scheme using equal order in-
terpolation to solve unsteady Navier-Stokes equations. A unified pressure stabilized
term is added to our scheme. We proved the uniform error estimates with respect to
the Reynolds number, provided the exact solution is smooth.
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1 Introduction

Let Q CRY (d=2,3) be a Lipschitz-continuous polyhedral region with boundary 0Q and
I be a fixed positive constant. We consider the following time-dependent incompressible
Navier-Stokes equations with homogeneous boundary conditions:

w+u-Vu—vAu+Vp=f in Qx[0,I],

(1.1)
u=0 on 00 x[0,1],
u(x,0)=u in Q,

where u=u(x,t) €R?x [0,1] denotes the velocities, p=p(x,t) €R x [0,]] denotes the pres-
sure, f=f(x,t) R x [0,1] denotes the body forces and uo=uo(x) ER? stands for the initial
velocities, v = Re~! denotes the viscosity coefficient, Re denotes the Reynolds number.
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The mixed finite element method is an important method to solve the Navier-Stokes
equations (NSEs). As is well known, there are two major difficulties in solving NSEs us-
ing standard Galerkin method. The first one is the approximate finite element spaces for
velocity and pressure must satisfy the inf-sup stability condition, since it cannot be inher-
ited from the continuous problem. The second one is even with inf-sup stable elements,
the numerical solution may become unstable when the viscosity is small. Over the past
decades, much work has been devoted to studying the stabilized mixed methods to solve
those two issues: the streamline diffusion (SD) method [1-10], the variational multiscale
method (VMS) method [11-15], the orthogonal subsclae method [16], the continuous in-
terior penalty (CIP) method [17], the local projection stabilized (LPS) method [18,19] and
the multi-level stabilized methods [35]. More work about the pressure stabilized meth-
ods can be found in [20-22,32-34]. Among these work for unsteady NSEs, the analysis
are usually different in two cases: (1) use of an inf-sup stable velocity pressure pair; (2)
use of equal order interpolation for velocities and pressure.

In both cases effects due to dominating convection must be stabilized. For the first
case, we refer to the VMS method [8], where the authors present finite element error es-
timates of a VMS method for the unsteady incompressible NSEs. The constants in these
estimates do not depend on the Reynolds number but on a reduced Reynolds number
or on the mesh size of a coarse mesh. For the second case, pressure stabilization tech-
nique must be involved. We refer to SD [3], CIP [13] and LPS [16] methods, where same
techniques are used to stabilize pressure and effects due to dominating convection. Error
estimates uniformly with the Reynolds number are obtained, provided the exact solution
is smooth. We should aware of that, in the analysis of unsteady NSEs, the “true” uni-
form error estimates (error estimates only dependent on the force term) with respect to
Reynolds number haven’t appeared yet. The analysis we mentioned above are depen-
dent on assuming the exact solution is smooth enough, so is the case in this paper.

In this paper, we prove the conforming equal order elements only with pressure sta-
bilized strategy also have uniform error estimates with respect to the Reynolds number,
provided the exact solution is smooth. Numerical performance are implemented to con-
firm and illustrate our theoretical analysis.

An outline of the paper is as follows. In Section 2, we introduce necessary notations.
In Section 3 we propose our unified pressure stabilized method. In Section 4 we give the
analysis of stability and error estimates for our method. In Section 5, we give numerical
experiments to confirm our analysis.

Throughout this paper, we use C to denote a positive constant independent of At, h
and v, not necessarily the same at each occurrence. The notation a b represents a < Cb.

2 Basic notations

For any bounded domain A C R%, let H"(A) and HJ'(A) denote the usual m!"-order
Sobolev spaces on A, and ||+ ||,A, | |m,a denote the norm and semi-norm on these spaces.




