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Abstract. In this paper, we use moving mesh finite element method based upon 4P1−
P1 element to solve the time-dependent Navier-Stokes equations in 2D. Two-layer
nested meshes are used including velocity mesh and pressure mesh, and velocity mesh
can be obtained by globally refining pressure mesh. We use hierarchy geometry tree
to store the nested meshes. This data structure make convienence for adaptive mesh
method and the construction of multigrid preconditioning. Several numerical prob-
lems are used to show the effect of moving mesh.
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1 Introduction

It is important that solving incompressible Navier-Stokes equations by mixed finite ele-
ment method. In order to satisfy the LBB condition, one way is to enhance velocity space
relative to pressure, for example Taylor-Hood element. The other is imposing constraint
on pressure space, such as stablized P1−P1, P1−P0 (see [1, 2]). In practical computing,
adaptive scheme is often used to decrease the computational cost for efficency. Mean-
while, it can improve the quality of solutions locally see [3]. There are some works using
h-adaptive P2−P1 element because of simplicity, see (see [4–6]) for detail. However, if do-
main has some corners or solutions have some singularities, we tend to use lower order
approximations in engineering computation. Adaptive method with stabilized P1−P1

and P1−P0 elements are proposed in [7]. In [8], dual element P1−P0 is used for moving
mesh method. It has some technical difficulties in applying adaptive mesh based on un-
stable element pairs. So P1isoP2P1 (see [9–11]) is considered. In [10], it is pointed out that
P1isoP2P1 satisfies the LBB condition. Four velocity elements can be obtained by refining
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Figure 1: Left: pressure p element, ◦ for degrees of p; right: four velocity v elements, • for degrees of v.

the pressure element one time as Fig. 1 shows. Note that P1isoP2P1 element is based on
one set of mesh, so basis functions of pressure element are obtained by the interpolation
of velocity basis functions. This will increase calculation.

In this paper, we choose 4P1−P1 finite element pair. It has the same structure as
P1isoP2P1 pair, so the LBB condition is naturally satisfied. However, The basis functions
of both velocity and pressure elements are all standard P1 element without any extra
interpolation. We use the hierarchy geometry tree which was proposed in [12] to store
the mesh structure of 4P1−P1 pair.

Moving mesh finite element methods have been developed by a lot of works such
as [13–19]. In [16], a moving mesh finite element method based upon harmonic map
was proposed. The authors in [8] extended the moving scheme to solve incompressible
Navier-Stokes equations. However, the boundary conditions of numerical experiments
in [8] are periodic. In this paper, we use moving mesh method based on 4P1−P1 pair and
the boundary conditions are general Dirichlet and Neumann boundary conditions.

The layout of the paper is arranged as follows. In Section 2, we introduce the Navier-
Stokes governing equations. In Section 3, we illustrate data structure for finite element
pair 4P1−P1, In Section 4, 4P1−P1 pair is used to approximate the governing equations.
Next, the AMG preconditioner for steady stokes equations is shown. In Section 6, the
moving mesh strategy is given. Then we present numerical experiments in Section 7.
Finally, we give the conclusions in this section.

2 Governing equation

Following [20], we give non-dimensional incompressible Navier-Stokes equations as fol-
lows:

∂tu−
1

Re
∇2u+(u·∇)u+∇p= f, (2.1a)

∇·u=0. (2.1b)

The variable u is velocity and the scalar variable p is pressure. The physical domain
is Ω. Reynolds number Re := UL

ν , where L represents a characteristic length scale for Ω,
U is the mean velocity of the inflow and ν > 0 is the constant kinematic viscosity. The


