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Abstract. A previously developed semi-implicit method to solve a density dependent
diffusion-reaction biofilm growth model on uniform Cartesian grids is extended to
accommodate non-orthogonal grids in order to allow simulation on more complicated
domains. The model shows two non-linear diffusion effects: it degenerates where the
dependent solution vanishes, and a super-diffusion singularity where it approaches its
upper bound. The governing equation is transformed to a general non-orthogonal ξ−η
curvilinear coordinate system and then discretized spatially using a cell centered finite
volume method. The nonlinear biomass fluxes at the faces of the control volume cell
are split into orthogonal and non-orthogonal components. The orthogonal component
is handled in a conventional manner, while the non-orthogonal component is treated
as a part of the source term. Extensive tests showed that this treatment of the non-
orthogonal flux component on the control volume face works well if the maximum
deviation from orthogonality in the region of the grid where the biomass is growing
is within 15-20 degrees. This range of validity is smaller than the one obtained with
the same method for the simpler porous medium equation which is the standard test
problem for degenerate diffusion equation but does not have all of the features of the
biofilm model.
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1 Introduction

Bacterial biofilms are aggregates of microbes that grow on surfaces in an aqueous en-
vironment. They form when bacterial cells attach themselves to the surface and begin
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producing Extracellular Polymeric Substances (EPS) within which the growing bacte-
ria cells remain embedded. Biofilms are ubiquitous, as they can be found growing in all
places where sufficient nutrient is available to sustain microbial growth. They are present
in both industrial and natural systems; as well as in surface and subsurface waters and
soils. In environmental engineering applications like waste-water treatment [36] they
play a positive role while in medical context they are the source of many infections [3].
Bacterial biofilms can exhibit complicated morphologies. The morphological features
of a growing biofilm depends both on the biological factors like maximum cell density,
specific growth rate as well as on the environmental conditions like nutrient availabil-
ity [10] and hydrodynamic conditions. In nutrient rich environments, individual biofilm
colonies grow quickly and form homogeneous compact layers, while in nutrient limited
conditions biofilms tend to grow into patchy structures [25].

In combination with the aforementioned factors, the sustainability of biofilms also de-
pends on the surface topography of the substratum on which the biofilms are attached. In
the presence of fluid flow, meso-scale surface features like cracks and crevices with size
(in the order of 10-100’s of microns) greater than that of a single cell have been shown
to influence biofilm growth and sustainability through means other than affecting the
cell attachment process. For example, studies done in [4] to investigate biofilm accu-
mulation in a model food processing equipment under different flow conditions have
observed that increased surface microbial loads was present in the areas around recesses
on the surfaces which were characterized by the presence of recirculating flow and low
shear stress. Likewise, studies done in [24] to investigate the susceptibility to antibiotics
of biofilms growing in glass flow cells with artificial crevices observed that the biofilm
growing on the top of the crevices were effectively treated while the biofilm growing
in the base of the crevice survived the antibiotic treatment and continued to grow once
the antibiotic treatment was discontinued. Biofilms in different applications grow on
surfaces with different topographical features, in contrast, biofilm growth experiments
conducted in labs as well as biofilm growth modeling studies in simulations are often
conducted in simple flow cell geometries which lack these surface features. Therefore
to understand the effect of these surface features on biofilm growth, sustainability and
removal, experiments and modeling studies need to be conducted in setups which have
these specific surface features.

Mathematical modeling and simulation [23,51] provides us an effective way to under-
stand and predict the growth of biofilms under different conditions. The model which
is the focus of our current study was proposed as a prototype biofilm growth model
in [10] and solved numerically to simulate the growth of a 2D heterogeneous single
species biofilm with a single limiting nutrient. Since its introduction in [10], the model has
been extended to accommodate a multi-species biofilm, model EPS production, model re-
sponse to antibiotics, model quorum sensing mode of communication with and without
fluid flow, and model internally triggered dispersal (see [8,11,14,16,17,22,27–29,32,42]).
The model has been derived both from the view point of treating the biofilms as a spa-
tially structured population [12] or as a mechanical object [35, 52], thereby reflecting the


