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Abstract. It has been shown in existing analysis that the Gauss Runge-Kutta (GRK)
(also called Legendre-Gauss collocation) formulation is super-convergent when ap-
plied to the initial value problem of ordinary differential equations (ODEs) in that
the discretization error is order 2s when s Gaussian nodes are used. Additionally,
the discretized system can be solved accurately and efficiently using the spectral de-
ferred correction (SDC) or Krylov deferred correction (KDC) method. In this paper, we

combine the GRK formulation with the Method of Lines Transpose (MoLT) to solve

time-dependent parabolic partial differential equations (PDEs). For the GRK-MoLT

formulation, we show how the coupled spatial differential equations can be decou-
pled and efficiently solved using the SDC or KDC method. Preliminary analysis of the

GRK-MoLT algorithm reveals that the super-convergent property of the GRK formula-
tion no longer holds in the PDE case for general boundary conditions, and there exists
a new type of “stiffness” in the semi-discrete spatial elliptic differential equations. We
present numerical experiments to validate the theoretical findings.
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1 Introduction

One approach to numerically discretizing the initial value problem of ordinary differen-
tial equations (ODEs) is to use the Gauss Runge-Kutta (GRK) formulation (also called the
Gaussian collocation, or Legendre-Gauss collocation, or differential quadrature method)
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[13,21,23]. In such a formulation, to march from t=0 to t=∆t, s Gaussian nodes in [0,∆t]
are chosen, and a polynomial solution in t is sought such that it satisfies the differential
equation at the Gaussian collocation points. It was shown that GRK formulation has ex-
cellent accuracy and stability properties for the ODE systems. Particularly, assuming the
solution is sufficiently smooth, the formulation is A-stable, B-stable, symplectic, symmet-
ric, and super-convergent (order 2s when s Gaussian nodes are used) [23]. For a fixed ∆t
and a smooth solution, the discretization error decays exponentially when s increases.
This is not surprising as the GRK formulation is also the pseudo-spectral formulation in
the temporal direction.

Despite of such excellent accuracy and stability properties, higher order GRK formu-
lation was rarely used previously to solve the initial value problem of ODEs. As far as
we know, the highest order of available GRK solvers based on the Newton’s method is 10
using 5 Gaussian nodes [23]. The reasons for this choice can be partially seen by consid-
ering the computational complexity when solving a system of N nonlinear ODEs using
the GRK formulation. Notice that in order to solve the linearized equations at each New-
ton’s iteration of a nonlinear GRK formulation, a prohibitive O(s3N3) work is required if
Gauss elimination is used because the unknowns at different nodes (times) are coupled.
In comparison, at the cost of reduced step size for stiff systems, an explicit time-stepping
method involves significantly less work at each time step as no equation solve is needed.
Also, a backward differentiation formula (BDF) type linear multistep method only re-
quires O(N3) work [7], and a diagonally implicit Runge-Kutta (DIRK) method requires
O(N3s) operations at each time step [22].

Recently, the classical deferred and defect correction strategies [3–5,32,33,40,41] have
been revisited to efficiently solve the higher-order (more than 20) orthogonal polynomial-
based collocation discretizations of the initial value ODEs, including the GRK formula-
tion. In particular, the spectral deferred correction (SDC) method was studied in [15],
in which a low-order method was used to solve an “error” equation iteratively to refine
the polynomial approximation on the Gaussian nodes. The computational complexity
of the SDC method is O(ksNp), where k is the number of corrections (iterations) that is
often set to s in existing implementations, p=3 when Gauss elimination is applied to the
linearized equation in the Newton’s method, and 1≤ p< 3 when the special structures
in the linearized system are utilized. Later in [24], it was pointed out that if the iterative
procedure converges, the solution solves the GRK formulation, and the SDC procedure
is a special path to the convergence. In fact, for linear ODE problems, the SDC method is
equivalent to a preconditioned Neumann series expansion where the low-order method
is used as a preconditioner to the higher-order GRK discretization (see Eq. (33) in [24]).
These observations not only clarify the analysis of the SDC method, but also suggest
the possibility of introducing the Krylov subspace method to the preconditioned system
for further acceleration. We refer interested readers to [25] for the details of the Krylov
deferred correction (KDC) method for the efficient solution to the GRK formulation for
ODEs. In their numerical experiments, orders up to 80 (40 Gaussian nodes) were tested
and the KDC method compared favorably against many existing time-marching tech-


