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Abstract. This work presents two computational efficiency improvements for the hy-
bridizable discontinuous Galerkin (HDG) fluid-structure interaction (FSI) model pre-
sented by Sheldon et al. A new formulation for the solid is presented that eliminates
the global displacement, resulting in the velocity being the only global solid vari-
able. This necessitates a change to the solid-mesh displacement coupling, which is
accounted for by coupling the local solid displacement to the global mesh displace-
ment. Additionally, the mesh basis and test functions are restricted to linear polyno-
mials, rather than being equal-order with the fluid and solid. This change increases the
computational efficiency dynamically, with greater benefit the higher order the com-
putation, when compared to an equal-order formulation. These two improvements
result in a 50% reduction in the number of global degrees of freedom for high-order
simulations for both the fluid and solid domains, as well as an approximately 50%
reduction in the number of local fluid domain degrees of freedom for high-order sim-
ulations. The new, more efficient formulation is compared against that from Sheldon
et al. and negligible change of accuracy is found.
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1 Introduction

Many natural phenomena, such as blood transport or aeroelastic flutter [1], require tight-
ly coupled fluid-structure interaction (FSI) simulations to accurately represent the com-
plex multi-physics. FSI simulations, particularly those involving large amplitude, low

∗Corresponding author. Email addresses: jsp203@psu.edu (J. S. Pitt), jasonpsheldon@gmail.com (J. P. Shel-
don), stmille@sandia.gov (S. T. Miller)

http://www.global-sci.com/ 1279 c©2018 Global-Science Press



1280 J. P. Sheldon, S. T. Miller and J. S. Pitt / Commun. Comput. Phys., 24 (2018), pp. 1279-1299

frequency, solid deformation, are substantially more computationally expensive and dif-
ficult to model than traditional fluid-only or solid-only simulations due to the tight cou-
pling on fluid-solid interface and the disparate mathematics used to describe the fluid
and solid regions in the models [2]. With the goal of reducing the computational expense
associated with FSI simulations, the hybridizable discontinuous Galerkin (HDG) method
was first utilized for FSI simulation by Sheldon et al. [3, 4]. The HDG method is a re-
cently developed finite element method that has the benefits of discontinuous Galerkin
(DG) methods, such as scalability in parallel, local conservation of variables, stability
with complicated geometries, and high-order accuracy based on the degree of the ap-
proximating polynomial [5], while reducing the high computational cost associated with
DG methods [6]. This reduction is achieved by separation (hybridization) of the solution
into local element solutions and global trace solutions on the element interfaces. This
minimizes the number of globally coupled degrees of freedom (DOFs), along with the
computational cost of solving the global system, while preserving the benefits of DG
methods. Only the primary variable of interest, referred to as the hybrid unknown, exists
in both the local and global solution spaces, and it is the only unknown solved for glob-
ally, i.e., across the entire mesh, in this formulation. The individual local variables can be
solved in an inherently parallel fashion, being completely decoupled from one another.

This work does not focus on deriving formulations with the HDG method or on FSI in
general. For more on these topics, please see Sheldon et al. [3,4,7]. Additionally, Nguyen
et al. present an excellent introduction to the HDG method in [8] for Stokes flow and in [9]
for an overview to a wide variety of physics. Extensive literature exists on a multitude
of other computational methods for FSI, e.g. [10–12], and the interested reader is referred
to the references therein for further information. This work also does not tackle many of
the items identified as future work for HDG FSI in [3, 4, 7], including: higher order post-
processing, the non-linear solid strain’s suboptimal convergence rate, parallel processing
scaling and efficiency studies, investigation of optimal stabilization parameters for HDG
multiphysics, and a full three-dimensional HDG FSI study. These remain interesting and
important areas of future work, each worthy of their own investigation.

Instead, the focus of this work is a reduction in the number of DOFs for the HDG
FSI system and the resultant increase in computational efficiency over the formulations
presented in [3, 4]. Two factors contribute to this DOF reduction. First, the global solid
displacement is eliminating from the solid formulation. This has repercussions on the
solid-mesh FSI coupling that are discussed later. Second, the function spaces for the mesh
test and basis functions are restricted to linear polynomials, regardless of the order of the
rest of the simulation. The computational effects of these two changes is a 50% reduction
in the number of global DOFs for high-order simulations across both the fluid and solid
domains, as well as an approximately 50% reduction in the number of local fluid domain
DOFs for high-order simulations. The specific DOF reductions versus simulation order
are detailed in Appendix A and Table 4.

In the following section a brief background of the mathematics necessary for HDG
FSI modeling is presented. Next, the fluid, solid, and mesh formulations from [3, 4] are


