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Abstract. In this paper, we develop the Hamiltonian conservative and L2 conservative
local discontinuous Galerkin (LDG) schemes for the Korteweg-de Vries (KdV) type
equations with the minimal stencil. For the time discretization, we adopt the semi-
implicit spectral deferred correction (SDC) method to achieve the high order accuracy
and efficiency. Also we compare the schemes with the dissipative LDG scheme. Stabil-
ity of the fully discrete schemes is provided by Fourier analysis for the linearized KdV
equation. Numerical examples are shown to illustrate the capability of these schemes.
Compared with the dissipative LDG scheme, the numerical simulations also indicate
that the conservative LDG scheme with high order time discretization can reduce the
long time phase error validly.
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1 Introduction

In this paper, we consider the initial value problem of Korteweg-de Vries (KdV) equation
{

ut+ f (u)x+εuxxx=0, x∈ I=[a,b], t>0,

u(x,0)=u0(x),
(1.1)

where t is time, x is the space coordinate in the direction of propagation, a,b,ε∈R,ε>0.
With smooth enough initial condition u0(x), we can obtain the existence and uniqueness
of solution [8]. The KdV equation is first introduced by Boussinesq (1877) and redis-
covered by Diederik Korteweg and Gustav de Vries in 1895 [14], in which studies the
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small-amplitude long waves in shallow water. In the study of water wave, it has two
well-known solutions, cnoidal wave and solitary wave solutions. In the last decades,
since the soliton solution proposed by Zabusky and Kruskal [33], the KdV equation has
risen a considerable interest by physicists and mathematicians. Actually, the KdV equa-
tion is a mathematical model for the propagation of nonlinear dispersive long waves in
many branches of physics and engineering including aerology, oceanography, plasma
physic, geology, among many others.

Various numerical methods of solving this equation have been proposed, like finite-
difference schemes [12, 20], pseudospectral methods [10], heat balance integral method
[15] and finite element method, especially discontinuous Galerkin method. The discon-
tinuous Galerkin method (DG method) is a class of finite element methods using com-
pletely discontinuous piecewise polynomial functions as numerical approximation and
test functions. The DG method was first introduced in 1973 by Reed and Hill in [19] for
solving steady state linear hyperbolic equations. The important ingredient of this method
is the design of suitable inter-element boundary treatments (so called numerical fluxes)
to obtain highly accurate and stable schemes in many situations.

Within the DG framework, the method was extended to deal with derivatives of or-
der higher than one, i.e. local discontinuous Galerkin (LDG) method. The first LDG
method was introduced by Cockburn and Shu in [5] for solving convection-diffusion
equation. Their work was motivated by the successful numerical experiments of Bassi
and Rebay [3] for compressible Navier-Stokes equations. Later, Yan and Shu developed
a LDG numerical method for a general KdV type equation containing third order deriva-
tives in [31], and they generalized the LDG method to PDEs with fourth and fifth spatial
derivatives in [32]. Levy, Shu and Yan [17] developed LDG methods for nonlinear dis-
persive equations that have compactly supported traveling wave solutions, the so-called
compactons. More recently, Xu and Shu further generalized the LDG method to solve
a series of nonlinear wave equations [24–27]. We refer to the review paper [29] of LDG
methods for high-order time-dependent partial differential equations.

According to the selection of numerical flux function for the nonlinear term f (u) and
the dispersive term εuxxx in KdV equations, the DG method can be divided into dissi-
pative and conservative schemes. Conservative discretization scheme means that this
scheme can preserve certain conserved quantities discretely. In the numerical experi-
ments of [4], the higher accuracy and better stability of the conservative scheme over
long temporal intervals can be seen. Usually, the conservation of L2 energy

H1=
∫

1

2
u2dx, (1.2)

and the conservation of the Hamiltonian

H2=
∫

ε

2
u2

x−V(u)dx, V(u)=
∫ u

f (ζ) dζ, (1.3)

are considered, since the KdV equation is a Hamiltonian system [11].


