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Abstract. In this paper, we firstly present a novel simple method based on a Picard in-
tegral type formulation for the nonlinear multi-dimensional variable coefficient fourth-
order advection-dispersion equation with the time fractional derivative order α∈(1,2).
A new unknown function v(x,t)=∂u(x,t)/∂t is introduced and u(x,t) is recovered us-
ing the trapezoidal formula. As a result of the variable v(x,t) are introduced in each
time step, the constraints of traditional plans considering the non-integer time situa-
tion of u(x,t) is no longer considered. The stability and solvability are proved with
detailed proofs and the precise describe of error estimates is derived. Further, Cheby-
shev spectral collocation method supports accurate and efficient variable coefficient
model with variable coefficients. Several numerical results are obtained and analyzed
in multi-dimensional spatial domains and numerical convergence order are consistent
with the theoretical value 3−α order for different α under infinite norm.
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1 Introduction

Fractional calculus is a natural generalization of integer order operator. Utilizing the
models based on derivatives of fractional orders in several branches of science and engi-
neering is a major study of many mathematicians and physicians [1–5]. Roughly speak-
ing time fractional derivative is designed to characterize physical processes and dynamic
systems with history memory. As a counterpart of traditional integer order differential
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equation, fractional differential equation can be obtained by replacing the integer order
derivatives with fractional ones in integer order differential equation. Fractional par-
tial differential equations(FPDEs), particularly space and time-fractional equations, have
been widely studied to construct the existence of solution and validity of these prob-
lems [6–8]. In addition, the reliable and powerful numerical and analytical methods for
solving FPDEs has been focused in the last two decades. According to the mathemat-
ical literature, fractional partial differential equations have been progressed in various
problems in science and engineering such as the Schrödinger, diffusion and telegraph
fractional equations [6, 9–14].

In several applications, the fourth-order model system [15, 16] is an important part
of the fractional order system and can be found in physics, engineering, statistics, and
other fields, such as wave propagation in beam problems [17], A flat surface system of
grooves [5,18], several mathematical models of fourth-order subdiffusion systems [18–21]
and so on. Here we will consider the following the nonlinear multi-dimensional variable
coefficient time-fractional fourth-order advection-dispersion equation:

c
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α
t u(x,t)−(A(x,t)+c

0D
α
t )∆u(x,t)

=−B(x,t)∆2u(x,t)+N (u(x,t))+ f (x,t), x∈Ω, t∈ (0,T], (1.1)

where A(x,t) and B(x,t) are positive variable coefficients with the following initial and
boundary conditions:

u(x,0)=u0(x), ut(x,0)=v0(x), x∈Ω, (1.2a)
u(x,t)=∆u(x,t)=0, x∈∂Ω, t∈ (0,T], (1.2b)

where u(x,t) is unknown functions. Here c
0D

β(x,t)
t denotes the higher order Caputo frac-

tional derivative of variable order β(x,t) with respect to t in [4, 5, 11, 15–21]
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∂nu(x,η)
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dη

(t−η)β(x,t)+1−n
, n−1≤β(x,t)≤n, (1.3)

where Γ(·) is the Gamma function. The nonlinear term N (u(x,t)) is assumed to satisfy
the following conditions: a) |N (u(x,t))| ≤C|u|, b) The first-order derivative function of
N (u(x,t)) with respect to u is bounded, i.e., |N ′(u(x,t))|≤ a, a is a positive constant.

Most of fractional partial differential equations do not have the analytic solutions,
many researchers in the last two decades have focused on the approximation or numer-
ical methods of these fractional order systems in [22, 23]. Lots of the researchers focus
their attention on the strong format. This format is directly obtained by the original dis-
crete equation. So, it is also called the collocation method. Strong formulation is reliable,
simple in structure, and easy to erect the algebra system. The homotopy analysis method
was utilized to approximate some FPDEs in [24, 25]. The finite difference scheme and
fractional predictor-corrector method are introduced for simulating the multi-term time-
fractional wave-diffusion equations with computationally effective results by Adams-
Bashforth method [26]. Also, some fractional differential equations utilized for model-
ing dynamical systems are investigated by an implicit difference approximation in [27].


