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Abstract. The multiderivative combined dissipative compact scheme (MDCS) is ex-
tended to implement applications on complex curvilinear meshes. According to our
previous evaluation on the scheme, a fifth-order MDCS, which has coexistent superior
resolution power and relatively high efficiency, is chosen to present the performance of
the MDCS. The capability of the fifth-order MDCS is evaluated by increasingly com-
plex meshes in three typical tests: acoustic scattering from two cylinders, flow over
a rod-airfoil configuration and flow over a landing gear model. On the curvilinear
meshes, high resolution power possessed by the representative fifth-order MDCS is
demonstrated for resolving acoustic wave. Moreover, the MDCS presents promising
capability in simulating multiple scales in turbulent flow.
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1 Introduction

Computational fluid dynamics (CFD) has been used routinely to complement experi-
mental measurement for engineering applications [1]. At present, most CFD tools are
based on second-order method capable of handling complex geometries. These tools are
proved to be very useful in predicting mean flow [2]. However, they have frequently
failed to predict highly separated flow, viscosity dominant flow and aeroacoustics [3]. In
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consideration of these flow phenomena, high-order CFD methods with third or higher
order accuracy are required to resolve unsteady vortices of disparate scales [4]. On the
ground of developing future CFD tools for engineering applications, the previously pro-
posed multiderivative combined dissipative compact scheme (MDCS) [5] is extended to
practical applications on complex curvilinear meshes in this paper. The MDCS is high-
resolution scheme possessing the capability of handling complex geometries. Accord-
ing to the previous study [5], the superior resolution power over that of the hybrid cell-
edge and cell-center dissipative compact schemes (HDCS) [6] is achieved by the MDCS
through multiple derivatives involved in the scheme; the performance of the MDCS on
complex curvilinear meshes will be evaluated by the present practical applications.

Various types of high-order methods have been developed to handle a wide range
of flow phenomena. These high-order methods were comprehensively discussed in sev-
eral review articles [3, 7, 8]. Among these methods, compact finite difference schemes,
such as the MDCS, are attractive schemes for flows with multiscales due to their high
formal order, good spectral resolution and their flexibility [9]. High-order compact fi-
nite difference schemes have been widely used in solving diverse problems involving
flow separation [10], turbulence [11] and aeroacoutics [12–14]. Although flow phenom-
ena simulated by high-order finite difference schemes are complex in published articles,
the employed meshes are rather simple in most of them. Lack of robustness and high
grid-quality sensitivity are major obstacles for the applications of high-order schemes on
complex meshes [7, 8].

For the purpose of enabling applications of high-order finite difference schemes on
complex grids, some fundamental studies have been conducted. It has been found that
the geometric conservation law (GCL) is extremely important for successful applications
of high-order finite difference schemes on curvilinear meshes [15–19]. With the GCL
satisfied, the free-stream preservation can be maintained. This preservation and the sat-
isfaction of the GCL contribute to enhanced robustness of high-order finite difference
schemes. In order to satisfy the GCL, the conservative metric method (CMM) was pro-
posed for finite difference schemes [19]. Based on the CMM, the symmetrical conserva-
tive metric method (SCMM) was further developed to increase the numerical accuracy
on irregular grids [20]. More recently, it has been proved that, on account of the GCL
being satisfied, numerical results with higher order of accuracy can be gained by finite
difference schemes on non-smooth grids [21].

Another challenge for finite difference schemes applied on engineering problems is
grid technique, since a structured single-block grid system can hardly be generated for a
complex configuration, which is commonly found in engineering applications. Overset
grid [17] and patched grid [22] strategies are two common options for high-order finite
difference schemes handling complex geometries. Another choice for this challenge is
multi-block structured grid technique with characteristic interface conditions [23]. Re-
cently, the adaptive mesh refinement (AMR) has shown attractive performance in han-
dling complex curvilinear meshes. Numerous high-order finite difference schemes has
been combined with the AMR [24]. The combination of the MDCS and the AMR is a


