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Abstract. In this paper we consider numerical solutions of the diffuse interface model
with Peng-Robinson equation of state for the multi-component two-phase fluid sys-
tem, which describes real states of hydrocarbon fluids in petroleum industry. A major
challenge is to develop appropriate temporal discretizations to overcome the strong
nonlinearity of the source term and preserve the energy dissipation law in the discrete
sense. Efficient first and second order time stepping schemes are designed based on
the “Invariant Energy Quadratization” approach and the stabilized method. The re-
sulting temporal semi-discretizations by both schemes lead to linear systems that are
symmetric and positive definite at each time step, and their unconditional energy sta-
bilities are rigorously proven. Numerical experiments are presented to demonstrate
accuracy and stability of the proposed schemes.
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1 Introduction

Many problems in the fields of science and engineering, particularly in materials science
and fluid dynamics, involve flows with multiple constitutive components [11, 22, 28, 29].
A typical well-known application is the subsurface gas and oil reservoir, which contains
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gas phase, oil phase and water phase, together with the solid phase [9]. From mathe-
matical modeling and numerical algorithmic points of view, it is a challenge to perform
numerical simulations of multiphase flows and study interfaces between phases, due to
inherent nonlinearities, topological changes, and complexities of dealing with unknown
moving interfaces.

There are many approaches to categorize the moving interfaces. The first method
to simulate multiphase and multi-component flows is interface tracking (sharp inter-
face modeling [24], front-tracking [10], immersed boundary [27]), and the interface is
described as a zero-thickness two-dimensional entity. This approach can successfully
predict the shape and dynamics of the interface, assuming that the interface tension is
given. However, it can not provide information within the interface itself. The second
method is the phase field model (interface capturing, diffuse interface theory) to simulate
multiphase and multi-component flows [1,2,4,5,21,23], which is an increasingly popular
choice for modeling the motion of multiphase and multi-component fluids. In the phase
field model, a conserved order parameter such as a mass concentration that varies con-
tinuously over thin interfacial layers is introduced, and the order parameter is mostly
uniform in the bulk phases. Based on this idea, sharp fluid interfaces are replaced by
thin but nonzero thickness transition regions where the interfacial forces are smoothly
distributed. The free interface can be automatically tracked without imposing any math-
ematical conditions on the moving interface. One advantage of the phase field model is
that the governing system of equations in the model can be derived from the variational
principle. Moreover, the phase field model usually leads to well-posed nonlinear systems
that satisfy the energy dissipation law. Therefore, this model has become a well-known
simulation tool to resolve the motion of free interfaces in multiple components, and has
also been successfully applied to many problems in the fields of science and industry
(see [12, 13, 30, 31] and the references cited therein).

In order to study the interface between phases, the development of energy stable
schemes for phase field model is an important issue. There are several popular numer-
ical approaches to construct energy stable schemes. The first approach is the convex
splitting method, which is introduced by Elliott and Stuart [3, 6] and popularized by
Eyre [7]. The main idea is assuming the free energy density can be split as the differ-
ence of two convex functions, where the convex part is treated implicitly and the concave
part is treated explicitly. Although the convex splitting method is unconditionally energy
stable and uniquely solvable, it reduces to a nonlinear system at each time step and the
implementation is complicated and the computational cost is high. The second widely
used approach is the stabilized method which treats the nonlinear terms explicitly, and
adds an artificial stabilization term to overcome strict temporal step constraint [39, 40].
This method is also energy stable and produces a linear system at each time step which is
easy to implement. However, it is not easy to find the stabilization term for all problems,
and it can not be unconditionally energy stable for second order scheme.

In this paper, we focus on the diffuse interface modeling of multi-component and
multiphase fluid systems, and consider the energy stable schemes for a more realistic


