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Abstract: In this paper, by using the coincidence degree theory, the existence of

solutions for a coupled system of fractional p-Laplacian differential equations at reso-

nance is studied. The result obtained in this paper extends some known results. An

example is given to illustrate our result.
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1 Introduction

In this paper, by using the coincidence degree theory, we discuss the existence of solutions

to a coupled system of fractional p-Laplacian differential equations at resonance:
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where 1 < α, β ≤ 2, and 3 < α + β ≤ 4; 0 < γ, δ ≤ β − 1; ϕpi(x) = |x|pi−2x, pi > 1,

ϕqi = ϕ−1
pi

,
1

pi
+

1
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= 1, i = 1, 2; 0 < ϵ1 < ϵ2 < · · · < ϵn1

< 1, 0 < σ1 < σ2 < · · · < σm1
< 1,

0 < ξ1 < ξ2 < · · · < ξn < 1, 0 < η1 < η2 < · · · < ηm < 1; Ar, aj , Bk, bl ∈ R,

r = 1, 2, · · · , n1, j = 1, 2, · · · , n, k = 1, 2, · · · ,m1, l = 1, 2, · · · ,m. Dα, Dβ , Dγ and Dδ are

the standard Riemann-Liouville fractional derivatives.

In this paper, we always suppose that the following conditions hold.
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(H2) fi: [0, 1]×R4 → R satisfied Carathéodory conditions, i = 1, 2, that is,

(i) f( · ; x1, x2, x3, x4): [0, 1] → R is measurable for all (x1, x2, x3, x4) ∈ R4;

(ii) f(t; · , · , · , · ): R4 → R is continuous for a.e. t ∈ [0, 1];

(iii) for each compact set K ⊂ R4 there is a function φK ∈ L∞[0, 1] such that

|f(t, x1, x2, x3, x4)| ≤ φK(t)

for a.e. t ∈ [0, 1] and all (x1, x2, x3, x4) ∈ K.

The existence of solutions for boundary value problem of integer order differential equa-

tions at resonance has been studied by many authors (see [1]–[10] and references cited

therein). Since the extensive applicability of fractional differential equations (see [11] and

[12]), recently, more and more authors pay their close attention to the boundary value prob-

lems of fractional differential equations (see [13]–[20]). In papers [13] and [14], the existence

of solutions to coupled system of fractional differential equations at nonresonance has been

given. In papers [15] and [16], the solvability of fractional differential equations at resonance

has been investigated.

Paper [16] investigates the following coupled system of fractional differential equations

at resonance: 
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where 1 < α, β ≤ 2, 0 < γ ≤ α − 1, δ ≤ β − 1; 0 < ξ1 < ξ2 < · · · < ξn < 1, 0 < η1 < η2 <

· · · < ηm < 1;
n∑

i=1

aiξ
β−γ−1
i = 1,

m∑
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biη
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i = 1. By using the coincidence degree theory

due to Mawhin and constructing suitable operators, the existence of solutions for (1.2) is

obtained.

In the past few decades, in order to meet the demands of research, the p-Laplacian

equation is introduced in some BVP, such as [17] and [18].


