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Abstract. This study proposes a new formulation of singular boundary method
(SBM) to solve the 2D potential problems, while retaining its original merits being
free of integration and mesh, easy-to-program, accurate and mathematically simple
without the requirement of a fictitious boundary as in the method of fundamental
solutions (MFS). The key idea of the SBM is to introduce the concept of the ori-
gin intensity factor to isolate the singularity of fundamental solution so that the
source points can be placed directly on the physical boundary. This paper presents
a new approach to derive the analytical solution of the origin intensity factor based
on the proposed subtracting and adding-back techniques. And the troublesome
sample nodes in the ordinary SBM are avoided and the sample solution is also not
necessary for the Neumann boundary condition. Three benchmark problems are
tested to demonstrate the feasibility and accuracy of the new formulation through
detailed comparisons with the boundary element method (BEM), MFS, regularized
meshless method (RMM) and boundary distributed source (BDS) method.
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1 Introduction

The method of fundamental solution (MFS) [1–3] is one of the collocation based bound-
ary type meshless methods with the merit of easy programming, high accuracy and
fast convergence. In order to avoid the singularity of fundamental solutions with a
strong-form collocation formulation, the MFS, however, places the source points on a
fictitious boundary outside or inside the physical domain, respectively, corresponding
to interior or exterior problems. Despite many years of hard research, the placement
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of this fictitious boundary for complex-shaped or multi-connected domain problems
remains a tricky art and is determined largely based on a trial-error approach [4–6].

Great efforts have since been made to remove the perplexing issue of fictitious
boundary encountered in the MFS. For this purpose, the boundary knot method (BKM)
was proposed by Chen et al. [7–10], in which the nonsingular general solution is
employed instead of using the singular fundamental solutions. Consequently, this
method can place source knots on the physical boundary while being meshless and
integration-free. However, similar to the MFS, the condition number of its discretiza-
tion matrix worsens quickly with an increasing number of boundary nodes. The BKM
is also mostly applied to interior Helmholtz and diffusion problems since the nonsin-
gular general solution is not available in some cases such as Laplace equation.

Based on the double-layer potential theory, an alternative collocation strong-form
technique, called the regularized meshless method (RMM), was proposed by Young
and his coworkers [11, 12]. This method used a subtracting and adding-back tech-
niques widely used in the BEM-based method [13, 14] to regularize the singularities
of the kernel functions, so that the source points can be directly located on the phys-
ical boundary. The kernel function in the RMM is the double-layer potential because
Young et al. [11] consider the desingularization of subtracting and adding-back tech-
nique will fail with the single-layer potential. Numerical studies show that the RMM
keeps the merit of the MFS and is efficient in the solution of Laplace problem [11], ex-
terior acoustics problem [12] and anti-plane shear problem [15]. However, the double-
layer fundamental solution used in the RMM requires the regularization of super-
singularities and jeopardizes its solution accuracy as compared with using a single-
layer fundamental solution.

Unlike the RMM, Sarler [16] simply uses the single-layer fundamental solution as
in the MFS, but unlike the MFS, the method does not require the fictitious boundary
and avoids the singularity by using an integral evaluation of its diagonal elements
of interpolation matrix. This approach is called the modified method of fundamental
solution (MMFS) and has been tested to potential flow problems with modest success.
It is noted that the integral calculation makes MMFS more complex and less efficient
than the MFS, the BKM and the RMM.

Liu [17] proposed a boundary distributed source (BDS) method, in which the sin-
gular fundamental solution is integrated over small areas covering the source points
so that the fictitious boundary is circumvented and the coefficients in the system of
equations can analytically be evaluated. However, the analytical expression of the
diagonal coefficients for equations with the Neumann boundary condition has to be
indirectly determined. And thus this method is still immature.

In this study, we focus on a recent boundary-type meshless method, called singu-
lar boundary method (SBM), proposed by Chen and his collaborators [18–21]. The
SBM overcomes the artificial boundary in the traditional MFS by allowing the source
point to coincide with the collocation points on the physical boundary. Its key idea
is to introduce the concept of the origin intensity factor to isolate the singularity of
the fundamental solution. And an inverse interpolation technique was proposed to


