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Abstract. Radial basis function (RBF) collocation methods (RBFCMs) are applied to
fourth order boundary value problems (BVPs). In particular, we consider the classical
Kansa method and the method of approximate particular solutions (MAPS). In the
proposed approach we include some so-called ghost points which are located inside
and outside the domain of the problem. The inclusion of these points is shown to
improve the accuracy and the stability of the collocation methods. An appropriate
value of the shape parameter in the RBFs used is obtained using either the leave-one-
out cross validation (LOOCYV) algorithm or Franke’s formula. We present and analyze
the results of several numerical tests.

AMS subject classifications: 65N35, 65N99

Key words: Radial basis functions, Kansa method, method of particular solutions, collocation,
fourth order PDEs.

1 Introduction

In recent years, meshless methods have undergone vigorous development and have ma-
tured as methods of choice for the solution of various science and engineering problems.
Unlike other traditional mesh-based methods such as the finite element method [1,2,25],
the finite difference method [34,35], and the finite volume method [22,23], the main at-
traction of meshless methods is their ability to easily and effectively solve problems in
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complex geometries, particularly in high dimensions. There are various types of meshless
methods and among them, radial basis function (RBF) collocation methods (RBFCMs)
have become increasingly popular and attracted considerable attention in recent years for
solving partial differential equations (PDEs). The first RBFCM was proposed by Kansa
in 1990 [17] and, over the years, various kinds of RBFCMs, such as the method of ap-
proximate particular solutions (MAPS) [3], the RBEF-differential quadrature method [32],
collocation for Cauchy problems [24], and the RBF Hermite collocation method [8], have
been proposed. Note that each of the above RBFCMs has its own advantages and dis-
advantages. Undoubtedly, the most famous and popular RBFCM is the Kansa method
which we shall be investigating in the current study. The Kansa method is known to
produce highly accurate results but is sensitive to the RBF shape parameter values and
its stability can be an issue. Among all of the above RBFCMs, the MAPS is an alternative
indirect method closely related to the Kansa method and has also proved to be effective.
Unlike the Kansa method, the MAPS adopts a particular solution of the considered dif-
ferential operator, with respect to the RBF, as the "new" basis function. The derivation
of a particular solution comes from an integration process and the obtained approxima-
tion is usually more stable with respect to the shape parameter. In the last few years,
the MAPS has attracted some attention in the RBF community and has been applied to
solve a large class of PDEs. Despite the success of the MAPS, the derivation of a partic-
ular solution in closed-form for general differential operators remains a major challenge.
For high order differential operators, the derivation of a closed-form particular solution
is substantially more difficult to obtain. Once the closed-form particular solution for a
given basis function and differential operator is available, the MAPS converts the given
PDE into an interpolation problem. Due to the difficulty of deriving a particular solution
for a general differential operator, an alternative is the use of the particular solution of
the Laplace operator for second order PDEs and the biharmonic operator for fourth order
PDEs, as the basis function. This approach for solving fourth order PDEs will be adopted
in this paper. It should be mentioned that often, in order to save computational effort in
problems requiring a large number of nodes, global RBFs may be replaced by local RBF
methods [4, 6,21, 38].

A major challenge in RBFCMs is the determination of an optimal, or at least suitable,
value of the shape parameter in the RBF used. Various studies have attempted to over-
come this difficulty, see, for example, [16,18,19,29]. We shall use the leave-one-out cross
validation algorithm (LOOCV) [10,29] and a modification of Franke’s formula [12]. The
issue of determining an appropriate value of the shape parameter can be avoided by us-
ing polyharmonic splines with additional polynomials which gives comparable accuracy
to infinitely differentiable RBFs, see, e.g. [11,16,28,37].

Fourth order boundary value problems (BVPs) are important in modelling various
types of physical problems such as plate bending [13], fluid dynamics [15], and com-
puter graphics problems [33], to name a few. Many meshless methods have been de-
veloped for the solution of fourth order PDEs where one of the challenges is that two
boundary conditions need to be imposed. As such, the resulting matrix in the classical



