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Abstract. The modified Kadomtsev-Petviashvili-I equation is studied by the Hirota bilin-

ear method. Certain lump solutions of this equation are found via the ansatz technique.

Rational solutions presented include plane bounded lumps, which do not decay in all

directions in the space.
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1. Introduction

As a (2 + 1)-dimensional integrable generalisation of the modified Korteweg-de Vries

equation, the modified Kadomtsev-Petviashvili (mKP) equation

Vt + Vx x x −
3

2
V 2Vx + 3σ2∂ −1

x Vy y − 3σVx∂
−1
x Vy = 0, (1.1)
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where σ2 = ±1, was introduced within the framework of the gauge-invariant description

of the KP equation in [13]. In [11], it appeared as the first member of the first modified KP

hierarchy. By introducing a new dependent variable defined as V = σU , Eq. (1.1) becomes

Ut + Ux x x − 3σ2

�

1

2
U2Ux − ∂

−1
x Uy y + Ux∂

−1
x Uy

�

= 0, (1.2)

which is classified as the modified Kadomtsev-Petviashvili-I (mKPI) equation when σ = i

and the modified Kadomtsev-Petviashvili-II (mKPII) equation when σ = 1 [44]. Both mKPI

and mKPII equations are physically significant nonlinear evolution equations. They can be

solved by the inverse scattering transform (IST) method, the Darboux transform method,

the ∂̄ -dressing method, the Hirota bilinear method — cf. Refs. [1,2,6,14–17,25,29,45].

Lump solutions are a kind of analytic rational function solutions, localised in all direc-

tions in the space. General rational function solutions of the Korteweg-de Vries equation,

the Boussinesq equation and the Toda lattice equation have been studied by using Wron-

skian and Casoratian determinant [5,22–24]. Special lumps also appear as solutions of KPI,

BKP, Davey-Stewartson-II and Ishimori-I equations [3,7,10,12,18,28,31,36–39]. Although

for mKP and KP equations the 2+ 1-dimensional Miura transformation exists, it does not

convert real solutions of mKPI and KPI equations into each other [15]. Therefore, it would

interesting to find an efficient way for finding real rational solutions of the mKPI equation.

Based on the Hirota bilinear method [9], one of the authors (Ma) proposed a direct

method for determining of positive quadratic function solutions to the (2+1)-dimensional

bilinear KPI equation [20] and general Hirota bilinear equations [21]. The same approach

applies to many other equations [8, 19, 26, 30, 32–35, 41, 42, 46–48]. The method has

been also recently used to characterise the lump solutions of the KPI equation with a self-

consistent source [43].

In this work, we employ Maple symbolic computation, to present two general classes of

lump solutions of the mKPI equation (1.2). This equation (1.2) has a Hirota bilinear form

and we use special ansätz to find real rational solutions. The solutions obtained contain

free parameters, a special choice of which covers lump solutions generated from the IST. In

addition, they also generate plane bounded lumps, which do not decay in all directions in

the space. Finally, a few concluding remarks are given at the end of the paper.

2. Lump Solutions of mKPI Equation

Using the variable transformation U = 2i(ln(G/F))x , one can write the mKPI equa-

tion (1.2) as
�

Dt + D3
x + 3iDx Dy

�

G · F = 0,
�

D2
x
− iDy

�

G · F = 0
(2.1)

with the D-operators
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