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Abstract. Let S: [0, 1]→[0, 1] be a chaotic map and let f ∗ be a stationary density of
the Frobenius-Perron operator PS: L1→L1 associated with S. We develop a numer-
ical algorithm for approximating f ∗, using the maximum entropy approach to an
under-determined moment problem and the Chebyshev polynomials for the sta-
bility consideration. Numerical experiments show considerable improvements to
both the original maximum entropy method and the discrete maximum entropy
method.
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1 Introduction

In the past fifty years, since the publication of the pioneering work of Jayne (see [8]),
the idea of maximum entropy method has been widely applied to solving density
function recovering problems in mathematical physics and stochastic analysis. This
idea was first adopted in [4] to numerically compute a stationary density of a chaotic
map S from the interval [0, 1] to itself, based on the classic Hausdorff moment prob-
lems.

The maximum entropy method developed in [4] has been applied to the compu-
tation of Lyapunov exponents of chaotic maps in [5], which is closely related to the
computation of the stationary density f ∗ since the Lyapunov exponent can be calcu-
lated by

λ =
∫ 1

0
f ∗(x) ln |S′(x)|dx,
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that quantitatively describes the sensitivity of the orbits on the initial conditions for the
chaotic dynamics. The numerical experiments in [4,5] suggest that for relatively small
number of moments, the algorithm can produce better approximations of the station-
ary density and exact Lyapunov exponent than the famous Ulam’s method (see [7,11]).
But due to the ill-conditioning resulting from employing the standard monomial ba-
sis of {1, x, x2, · · · , xn} (the condition number may reach the order of 1017 for n=12),
round-off errors dominate the computation of the algorithm even if a high precision
Gauss quadrature is used in numerical integration.

Recently, the authors of [2] proposed a discrete version of a maximum entropy
method for computing stationary densities and Lyapunov exponents. Basically they
first approximate the Boltzmann entropy functional, which is the objective function of
the maximum entropy optimization problem, by a high precision Gauss quadrature,
and do the same thing for the moment constraints. The resulting optimization prob-
lem is still finite dimensional, but integration is avoided, which is natural since the
Gauss quadrature numerical integration had been done before solving the discretized
optimization problem. In their implementation of the algorithm, the monomial basis
of polynomials is replaced with the Chebeshev polynomial basis. The computation-
ally needed moments of the unknown stationary density with respect to the Chebe-
shev polynomials are estimated by the average values of the polynomials along the
orbit of an initial point under the repeated iteration of the map S. This is justified in
theory by the classic Birkhoff individual ergodic theorem, which says that the time
average equals the space average for ergodic maps. As many as 150 moments can be
used in [2] for the implementation of the algorithm. However, there is an approxima-
tion accuracy issue here, that is, some additional errors occur from approximating the
Boltzmann entropy functional and the constraint equations. Such errors explain why
a relatively large number of moments are needed for the numerical recovery of the
stationary density to a prescribed precision.

In this paper, we intend to overcome the two main drawbacks of the original maxi-
mum entropy method for solving the stationary density problem of Frobenius-Perron
operators. The first drawback is the ill-conditioning of the monomials, so we employ
orthogonal polynomials in our numerical computation. The second drawback is re-
lated to the ”homogeneous moment problem” proposed in [4] since the maximum
entropy solution involves the underlying map which is only piecewise continuous
in general. Thus, a good accuracy of the computed stationary density may not be
guaranteed. To solve this problem, as is done in the paper [2], we use the same idea
of Birkhoff’s individual ergodic theorem, and consequently we solve a ”nonhomoge-
neous moment problem” whose solution is a smooth function. Thus we propose a new
practical algorithm for solving the stationary density problem of Frobenius-Perron op-
erators, which combines the original idea of the maximum entropy method [4] and
the idea of solving a nonhomogeneous moment problem [2], using the good stabil-
ity property of the orthogonal polynomials. From the reported numerical experiment
results one can see that the present algorithm can not only use as many moments as
needed, but also give a faster convergence. For some maps our algorithm uses much


