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Abstract. Numerically solving 3D seismic wave equations is a key requirement for
forward modeling and inversion. Here, we propose a weighted Runge-Kutta dis-
continuous Galerkin (WRKDG) method for 3D acoustic and elastic wave-field mod-
eling. For this method, the second-order seismic wave equations in 3D heteroge-
neous anisotropic media are transformed into a first-order hyperbolic system, and
then we use a discontinuous Galerkin (DG) solver based on numerical-flux formu-
lations for spatial discretization. The time discretization is based on an implicit di-
agonal Runge-Kutta (RK) method and an explicit iterative technique, which avoids
solving a large-scale system of linear equations. In the iterative process, we introduce
a weighting factor. We investigate the numerical stability criteria of the 3D method in
detail for linear and quadratic spatial basis functions. We also present a 3D analysis of
numerical dispersion for the full discrete approximation of acoustic equation, which
demonstrates that the WRKDG method can efficiently suppress numerical dispersion
on coarse grids. Numerical results for several different 3D models including homoge-
neous and heterogeneous media with isotropic and anisotropic cases show that the 3D
WRKDG method can effectively suppress numerical dispersion and provide accurate
wave-field information on coarse mesh.
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1 Introduction

Accurate and efficient numerical method is necessary in computational geophysics for
the purpose of resource explorations and understanding the earth. In recent years, there
has been a strong interest for the discontinuous Galerkin method (DGM) in seismic nu-
merical simulation. The DGM was first introduced in the early 1970s for solving the lin-
ear neutron transport equations [1], and later extended to solve hyperbolic conservation
problems by employing discontinuous flux formulations and varies temporal discretiza-
tions. The work by Cockburn and Shu [2, 3] formulated the total variation diminishing
(TVD) RK discontinuous Galerkin method into a complete mathematical framework. In
computational seismology DGM has rapid developments [4–14]. For instance, an ar-
bitrary high-order derivatives DGM proposed by Dumbser and Käser has been widely
used in computational geophysics [6–11]. In 3D seismic modeling, the complex geologic
geometry and large velocity contrast bring up many challenges to numerical methods
due to the large amount of computations and storage requirements. However, the DGMs
have been proved successfully to be efficient and high-order accurate in modeling seis-
mic elastic wave propagating in complex media [5,12], even with viscoelastic attenuation
media [7].

The main difference between the DGM and traditional FEM is that the basis function
can be discontinuous across elements in DGM. In general, DGM has the following advan-
tages: (i) it maintains good properties with respect to conservation, stability, and conver-
gence; (ii) it is easy to deal with domains with complex structures and non-conforming
meshes, allowing for hanging nodes; (iii) the solution can be discontinuous across the
element interfaces; (iv) complete localization means that DGM avoids dealing with large
global mass matrices and is therefore especially suitable for parallel computing; (v) it is
flexible for DGM to deal with locally varying polynomial degrees and element shapes
(hp-adaptivity).

Many developed DGMs are based on the semi-discrete approach, wherein they em-
ploy the discontinuous Galerkin formulations for the spatial discretization, transforming
the original partial differential equations (PDEs) into a system of ordinary differential
equations (ODEs). After that, a time-stepping method is carried out to advance the so-
lution in time, such as RK schemes [2], arbitrary high-order derivatives time stepping
method [6] or the Lax-Wendroff method [15]. Explicit time-stepping scheme is widely
used since it is easy to program. Alternatively, implicit solvers, such as diagonal implicit-
RK [16,17] and Newton iterative methods [18,19], are used in time discretization because
they permit to use longer time steps. However, the shortcoming of fully implicit solvers
is the extremely high computational cost induced by solving the large-scale linear alge-
braic equations. For this reason, explicit techniques such as the truncated differentiator
series method and the predictor-corrector method have been developed (e.g., [20–22]),
which turn to be robust methods to convert implicit methods into explicit ones and may
preserve the good stability inherent in implicit schemes. In our research these techniques
will be considered.


