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Abstract. We develop Banach spaces for ReLU neural networks of finite depth L and
infinite width. The spaces contain all finite fully connected L-layer networks and their
L2-limiting objects under bounds on the natural path-norm. Under this norm, the
unit ball in the space for L-layer networks has low Rademacher complexity and thus
favorable generalization properties. Functions in these spaces can be approximated by
multi-layer neural networks with dimension-independent convergence rates.

The key to this work is a new way of representing functions in some form of expec-
tations, motivated by multi-layer neural networks. This representation allows us to
define a new class of continuous models for machine learning. We show that the gra-
dient flow defined this way is the natural continuous analog of the gradient descent
dynamics for the associated multi-layer neural networks. We show that the path-norm
increases at most polynomially under this continuous gradient flow dynamics.
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1 Introduction

It is well-known that neural networks can approximate any continuous function on a
compact set arbitrarily well in the uniform topology as the number of trainable parame-
ters increase [9, 26, 32]. However, the number and magnitude of the parameters required
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may make this result unfeasible for practical applications. Indeed it has been shown to
be the case when two-layer neural networks are used to approximate general Lipschitz
continuous functions [22]. It is therefore necessary to ask which functions can be approx-
imated well by neural networks, by which we mean that as the number of parameters
goes to infinity, the convergence rate should not suffer from the curse of dimensionality.

In classical approximation theory, the role of neural networks was taken by (piece-
wise) polynomials or Fourier series and the natural function spaces were Hölder spaces,
(fractional) Sobolev spaces, or generalized versions thereof [33]. In the high-dimensional
theories characteristic for machine learning, these spaces appear inappropriate (for ex-
ample, approximation results of the kind discussed above do not hold for these spaces)
and other concepts have emerged, such as reproducing kernel Hilbert spaces for random
feature models [37], Barron spaces for two-layer neural networks [4,17–19,22,23,29], and
the flow-induced space for residual neural network models [18].

In this article, we extend these ideas to networks with several hidden (infinitely wide)
layers. The key is to find how functions in these spaces should be represented and what
the right norm should be. Our most important results are:

1. There exists a class of Banach spaces associated with multi-layer neural networks
which has low Rademacher complexity (i.e. multi-layer functions in these spaces
are easily learnable).

2. The neural tree spaces introduced here are the appropriate function spaces for the
corresponding multi-layer neural networks in terms of direct and inverse approxi-
mation theorems.

3. The gradient flow dynamics is well defined in a much simpler subspace of the cor-
responding neural tree space. Functions in this space admit an intuitive represen-
tation in terms of compositions of expectations. The path norm increases at most
polynomially in time under the natural gradient flow dynamics. Since the path-
norm controls the generalization gap, this slow increase suggests that gradient flow
training does not lead to overfitting.

These results justify our choice of function representation and the norm.
Neural networks are parametrized by weight matrices which share indices only be-

tween adjacent layers. To understand the approximation power of neural networks, we
rearrange the index structure of weights in a tree-like fashion and show that the approx-
imation problem under path-norm bounds remains unchanged. This approach makes
the problem more linear and easier to handle from the approximation perspective, but
is unsuitable when describing training dynamics. To address this discrepancy, we intro-
duce a subspace of the natural function spaces for very wide multi-layer neural networks
(or neural trees) which automatically incorporates the structure of neural networks. For
this subspace, we investigate the natural training dynamics and demonstrate that the
path-norm increases at most polynomially during training.


