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Abstract. Two adaptive techniques for choosing relaxation factor, namely, Minimal
Residual Relaxation (MRR) and Orthogonal Projection Relaxation (OPR), on basic it-
erative methods for solving linear systems are proposed. Unlike classic relaxation, in
which the optimal relaxation factor is generally difficult to find, in these proposed tech-
niques, non-stationary relaxation factor based on minimal residual or orthogonal pro-
jection method is calculated adaptively in each relaxation step with acceptable cost for
Jacobi, Gauss-Seidel or symmetric Gauss-Seidel iterative methods. In order to avoid
the ”stagnation” of the successive locally optimal relaxations, a recipe of inserting sev-
eral basic iterations between every two adjacent relaxations is suggested and the re-
sulting MRR(m)/OPR(m) strategy is more stable and efficient (here m denotes the
number of basic iterations inserted). To solve linear systems with multiple right-hand
sides efficiently, block-form relaxation strategies are proposed based on the MRR(m)
and OPR(m). Numerical experiments show that the presented MRR(m)/OPR(m) al-
gorithm is more robust and effective than classic relaxation methods. It is also showed
that the proposed block relaxation strategies can efficiently accelerate the solution of
systems with multiple right-hand sides in terms of total solution time as well as num-
ber of iterations.
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1 Introduction

In the field of computational physics, the following linear system

Ax=b (1.1)
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is common, where A∈R(n×n) is nonsingular and usually sparse, b∈Rn and x∈Rn stand
for the right-hand side vector and the vector of unknowns, respectively.

In practice, the solution strategies for solving linear systems with smaller n are based
on direct methods, because these direct methods are robust and the characteristics of
solution are predictable. However, in direct methods, the sparsity of A is usually not
easy to keep after matrix factorization and thus excessive storage is required. This makes
the direct approaches have poor scaling with system size. Increasing needs for solving
large sparse linear systems triggers a shift toward iterative techniques [1]. Basic iterative
methods such as Jacobi and Gauss-Seidel iterative methods, suffer from significant slow
convergence for ”low frequency error component” [2]. This makes Krylov subspace ap-
proaches such as the Conjugate Gradient (CG) method [3] and the Generalized Minimal
Residual (GMRES) method [4] more attractive.

Research on acceleration strategies for basic iterative methods is motivated by their
conciseness and parallelizability as well as their characteristics of smoothing high fre-
quency error for multigrid method [5, 6]. Although basic iterative methods are hardly
used as standalone solvers due to their slow convergence rate, they are important parts
of high performance parallel or multigrid algorithm for larger systems. In addition, the
performance of basic iterative methods is also important when they are used as precon-
ditioners for Krylov subspace methods [7].

Among the acceleration strategies, Chebyshev acceleration [5,8] and relaxation accel-
eration [5] are common techniques. Chebyshev acceleration is essentially a kind of poly-
nomial acceleration method and the optimal Chebyshev acceleration requires knowledge
of eigenvalues of A. Classic relaxation (or extrapolation) strategy [9–11] can accelerate ba-
sic iterative methods by introducing the so-called relaxation factor. When applied to Ja-
cobi iterative method, the classic relaxation method yields to Weighted Jacobi method [1]
or JOR (Jacobi Over-Relaxation) method [11]. The Successive Over Relaxation (SOR) is
another kind of relaxation acceleration strategy for Gauss-Seidel iterations.

The performance of relaxation method is dependent on and sensitive to the choice of
relaxation factor. In practice, the relaxation factor can be specified empirically or calcu-
lated through some techniques. Calculating the optimal value of relaxation factor is not
easy and there is a vast number of works on estimating the factor in the literature. Two
categories of the techniques are classified here: the analysis approach and the numerical
approach.

The analysis approaches try to give reference formulas analytically of the optimal re-
laxation factor by utilizing properties of the iteration matrix, for example, the formulas
for Weighted-Jacobi as well as Gauss-Seidel relaxation methods [12]. These formulas are
related to eigenvalues of the iteration matrix which are difficult or even impossible to
obtain, and suitable only for specific situation. The implementation of the formulas may
vary with different problems or techniques. For finite difference problem to the Poisson
equation, Yang and Gobbert [13] provided an explicit SOR relaxation factor formula form
for different space dimensions; in [14], another mathematical analysis was conducted to
derive the eigenvalues of the iteration matrix. Implementation of the SOR relaxation


