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Abstract. In this paper, we apply an a posteriori error control theory that we de-
velop in a very recent paper to three families of the discontinuous Galerkin meth-
ods for the Reissner-Mindlin plate problem. We derive robust a posteriori error
estimators for them and prove their reliability and efficiency.
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1 Introduction

This paper will consider a posteriori error analysis of finite element methods for the
Reissner-Mindlin plate problem: given g∈L2(Ω) find

(w, ϕ) ∈ W × Θ := H1
0(Ω)× H1

0(Ω)2,

with
a(ϕ, ψ) + (γ,∇v − ψ)L2(Ω) = (g, v)L2(Ω), for all (v, ψ) ∈ W × Θ, (1.1)

and the shear force
γ = λt−2(∇w − ϕ). (1.2)

Here and throughout this paper, t denotes the plate thickness, λ=Ek/2(1 + ν) the
shear modulus, E the Young modulus, ν the Poisson ratio, and κ the shear correction
factor. Given ϕ∈Θ, the linear Green strain ε(ϕ)=1/2[∇ϕ +∇ϕT] is the symmetric
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part of gradient field ∇ϕ. For all 2 × 2 symmetric matrices the linear operator C is
defined by

Cτ :=
E

12(1 − ν2)

[
(1 − ν)τ + ν tr(τ)I

]
.

The bilinear form a(·, ·) models the linear elastic energy defined as

a(ϕ, ψ) = (Cε(ϕ), ε(ψ))L2(Ω), for any ϕ, ψ ∈ Θ, (1.3)

which gives rise to the norm

∥ψ∥2
C := a(ψ, ψ), for any ψ ∈ Θ, (1.4)

while ∥ · ∥Ch denotes the broken version with the piecewise defined operator εh taking
the place of ε, and (·, ·)L2(Ω) the L2 scalar product.

This plate theory has become a popular plate bending model in the engineering
community due to its simplicity and effectiveness. However, a direct finite element
approximation usually yields poor numerical results, i.e., they are too small com-
pared with the continuous solutions. Such a phenomenon is usually referred to as
shear locking. To weaken or even overcome the locking, many methods have been pro-
posed, most of them can be regarded as reduction integration methods. Very recently,
three class of the discontinuous Galerkin methods are used to discretize the Reissner-
Mindlin plate problems [1, 2]. The aim of this paper is to provide a robust a prior and
a posteriori error analysis for these methods.

2 Notation and preliminary results

We use the standard differential operators:

∇r =
( ∂r

∂x
,

∂r
∂y

)
, curl p =

(∂p
∂y

,−∂p
∂x

)
.

Given any 2D vector function
ψ = (ψ1, ψ2),

its divergence reads

div ψ =
∂ψ1

∂x
+

∂ψ2

∂y
.

With the differential operator

rot ψ =
∂ψ2

∂x
− ∂ψ1

∂y
,

for a vector function ψ=(ψ1, ψ2), the space H0(rot, Ω) is defined as

H0(rot, Ω) :=
{

v ∈ L2(Ω)2, rot v ∈ L2(Ω) and v · τ = 0 on ∂Ω
}

,


