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Marek Nečada∗ and Päivi Törmä

Department of Applied Physics, Aalto University School of Science, P.O. Box 15100,
FI-00076 Aalto, Finland.

Received 14 July 2020; Accepted (in revised version) 18 January 2021

Abstract. The multiple scattering method T-matrix (MSTMM) can be used to solve the
electromagnetic response of systems consisting of many compact scatterers, retaining
a good level of accuracy while using relatively few degrees of freedom, largely sur-
passing other methods in the number of scatterers it can deal with. Here we extend
the method to infinite periodic structures using Ewald-type lattice summation, and
we exploit the possible symmetries of the structure to further improve its efficiency,
so that systems containing tens of thousands of particles can be studied with relative
ease. We release a modern implementation of the method, including the theoretical
improvements presented here, under GNU General Public Licence.
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1 Introduction

The problem of electromagnetic response of a system consisting of many relatively small,
compact scatterers in various geometries, and its numerical solution, is relevant to several
branches of nanophotonics. In practice, the scatterers often form some ordered structure,
such as metallic or dielectric nanoparticle arrays [12,29,61,70] that offer many degrees of
tunability, with applications including structural color, ultra-thin lenses [28], strong cou-
pling between light and quantum emitters [48, 57, 58], weak and strong coupling lasing
and Bose-Einstein condensation [16, 18, 19, 49, 59, 60, 67, 69], magneto-optical effects [27],
or sensing [32]. The number of scatterers tends to be rather large; unfortunately, the most
common general approaches used in computational electrodynamics are often unsuit-
able for simulating systems with larger number of scatterers due to their computational
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ada.org (M. Nečada), paivi.torma�aalto.fi (P. Törmä)

http://www.global-sci.com/cicp 357 ©2021 Global-Science Press
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complexity: differential methods such as the finite difference time domain (FDTD, [56])
method or the finite element method (FEM, [46]) include the field degrees of freedom
(DoF) of the background medium (which can have very large volumes), whereas integral
approaches such as the boundary element method (BEM, a.k.a the method of moments,
MOM [21, 40, 51]) need much less DoF but require working with dense matrices con-
taining couplings between each pair of DoF. Therefore, a common (frequency-domain)
approach to get an approximate solution of the scattering problem for many small par-
ticles has been the coupled dipole approximation (CD) [68] where a drastic reduction of
the number of DoF is achieved by approximating individual scatterers to electric dipoles
(characterised by a polarisability tensor) coupled to each other through Green’s functions.

CD is easy to implement and demands relatively little computational resources but
suffers from at least two fundamental drawbacks. The obvious one is that the dipole
approximation is too rough for particles with diameter larger than a small fraction of
the wavelength, which results to quantitative errors. The other one, more subtle, mani-
fests itself in photonic crystal-like structures used in nanophotonics: there are modes in
which the particles’ electric dipole moments completely vanish due to symmetry, and
regardless of how small the particles are, the excitations have quadrupolar or higher-
degree multipolar character. These modes, belonging to a category that is sometimes
called optical bound states in the continuum (BIC) [22], typically appear at the band edges
where interesting phenomena such as lasing or Bose-Einstein condensation have been
observed [16, 18, 19, 45, 67] – and CD by definition fails to capture such modes.

The natural way to overcome both limitations of CD mentioned above is to take
higher multipoles into account. Instead of a polarisability tensor, the scattering prop-
erties of an individual particle are then described with more general transition matrix
(commonly known as T-matrix), and different particles’ multipole excitations are cou-
pled together via translation operators, a generalisation of the Green’s functions used
in CDA. This is the idea behind the multiple-scattering T-matrix method (MSTMM), a.k.a.
superposition T-matrix method [34], and it has been implemented many times in the con-
text of electromagnetics [52], but usually only as specific codes for limited subsets of
problems, such as scattering by clusters of spheres, circular cylinders, or Chebyshev par-
ticles [9, 35, 36, 66]; there also exists a code for modeling photonic slabs including 2D-
periodic infinite arrays of spheres [54, 55]. From the rather rare examples in this field of
publicly available codes with clear public licence and without proprietary dependences
we point out FaSTMM [37, 38], which has been perhaps the most general MSTMM soft-
ware with respect to the system geometry for particle ensembles with homogeneous
background, and SMUTHI [7, 8] for dealing with finite ensembles of particles in a lay-
ered medium.

However, the potential of MSTMM reaches far beyond its past implementations. Here
we present several enhancements to the method, which are especially useful in metama-
terial and nanophotonics simulations. We extend the method on infinite periodic lattices
(in all three possible dimensionalities) using Ewald-type summation techniques. This en-
ables, among other things, to use MSTMM for fast solving of the lattice modes of such


