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Abstract. In studying biomechanical deformation in articular cartilage, the pres-
ence of cells (chondrocytes) necessitates the consideration of inhomogeneous elas-
ticity problems in which cells are idealized as soft inclusions within a stiff extra-
cellular matrix. An analytical solution of a soft inclusion problem is derived and
used to evaluate iterative numerical solutions of the associated linear algebraic sys-
tem based on discretization via the finite element method, and use of an iterative
conjugate gradient method with algebraic multigrid preconditioning (AMG-PCG).
Accuracy and efficiency of the AMG-PCG algorithm is compared to two other con-
jugate gradient algorithms with diagonal preconditioning (DS-PCG) or a modified
incomplete LU decomposition (Euclid-PCG) based on comparison to the analyti-
cal solution. While all three algorithms are shown to be accurate, the AMG-PCG
algorithm is demonstrated to provide significant savings in CPU time as the num-
ber of nodal unknowns is increased. In contrast to the other two algorithms, the
AMG-PCG algorithm also exhibits little sensitivity of CPU time and number of it-
erations to variations in material properties that are known to significantly affect
model variables. Results demonstrate the benefits of algebraic multigrid precondi-
tioners for the iterative solution of assembled linear systems based on finite element
modeling of soft elastic inclusion problems and may be particularly advantageous
for large scale problems with many nodal unknowns.
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1 Introduction

Biomechanical deformation of articular cartilage, the primary load-bearing soft tissue
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in joints such as the knee, shoulder and hip, is commonly modeled via biphasic contin-
uum mixture theories [16] that idealize the tissue as a fluid-saturated porous medium.
In compressive loading at mechanical equilibrium, biphasic deformation of articular
cartilage can be modeled based on elasticity theory. However, the presence of a single,
sparsely distributed, population of cells (chondrocytes) necessitates the consideration
of inhomogeneous inclusion problems in which each cell is idealized as a soft inclu-
sion within a stiff extracellular matrix. Simulating inhomogeneous deformation in the
biomechanical microenvironment of the cells in articular cartilage is challenging due
to coupled effects among these distinct cartilage regions as they also span disparate
length scales (µm to mm), and a wide range of elastic stiffness (KPa to Mpa).

To date, several numerical methods have been developed to study interface prob-
lems that exhibit inhomogeneous elastic deformation. For example, in [15], an ax-
isymmetric boundary element method (BEM) for linear elastic domains with internal
interfaces was developed. Using direct methods to solve the associated linear alge-
braic system, the BEM was used to determine linear elastic properties of a pericellular
matrix surrounding individual cells via inverse analysis of previously reported exper-
imental data for in situ cell deformation within a cylindrical cartilage explant under
static compression. Z. Li and co-authors [6, 7] developed a new immersed interface
finite element method to capture the jump conditions along an internal interface for
structured meshes. Due to their versatility in generation of unstructured meshes (e.g.,
via triangular or tetrahedral elements), finite element methods are most commonly
used to model elastic deformation in the presence of curved internal interfaces. Use
of iterative methods, such as Krylov subspace methods [19], for solution of the as-
sembled linear algebraic systems ensures scalability to problems of moderate to large
scale. However, it is well known that the convergence rate of an iterative method
depends strongly on the spectral properties of associated operators and, as such, ac-
curacy and efficiency of the associated numerical solutions depend on the choice of
algorithm.

Multigrid (MG) methods can be used to significantly accelerate the convergence of
iterative methods [2, 20]. When they are well-suited to an application, MG methods
exhibit convergence that is independent of problem size [9]. Success of MG techniques
is rooted in the differing convergence rates of errors on coarse versus fine grids that
are captured by ”V-cycles” that traverse the coarse and fine grids during the itera-
tive solution procedure. While initially considered for classical scalar elliptic PDEs,
MG methods were later extended to systems of PDEs. Whereas geometric multigrid
(GMG) methods require the use of structured hierarchical meshes, algebraic multigrid
(AMG) methods effectively induce coarse discretization via direct indexing within
the linear algebraic system. Some AMG studies of linear elasticity on unstructured
grids relevant to the current work are those of Griebel et al. [8] and Xiao et al. [17],
and both studies iterate over multiple V-cycles. In [8], equations of 2D and 3D lin-
ear isotropic elasticity were considered and analysis of a blockwise generalization of
an AMG method [18] was performed, demonstrating convergence rates independent
of problem size. In [17], Xiao et al. considered 2D elastic domains with highly dis-


