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Abstract. A localized version of the method of fundamental solution (LMFS) is de-
vised in this paper for the numerical solutions of three-dimensional (3D) elasticity
problems. The present method combines the advantages of high computational ef-
ficiency of localized discretization schemes and the pseudo-spectral convergence rate
of the classical MFS formulation. Such a combination will be an important improve-
ment to the classical MFS for complicated and large-scale engineering simulations.
Numerical examples with up to 100,000 unknowns can be solved without any diffi-
culty on a personal computer using the developed methodologies. The advantages,
disadvantages and potential applications of the proposed method, as compared with
the classical MFS and boundary element method (BEM), are discussed.
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1 Introduction

The method of fundamental solutions (MFS) has emerged as a robust boundary-type
meshless method for the solutions of certain boundary value problems [1–8]. The method
won the favor of many researchers in engineering and science due to its advantage of
high accuracy for many engineering applications [7, 9–13]. The classical MFS approach,
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however, produces dense and non-symmetric matrix of algebraic equations that requires
memory and other operators to compute the unknown coefficients [14–18]. This makes
the method limited to solving small-scale problems with thousands of degrees of freedom
for a long time [7, 19–24].

To overcome the aforementioned bottleneck associated with the classical MFS, a lo-
calized version of the method, named as the localized MFS (LMFS), is proposed by Fan
and his coworkers [25–27]. In the LMFS approach, the whole computational domain is
divided into a set of overlapping local subdomains in which the classical MFS approxi-
mation and moving least square (MLS) techniques are employed. Since the final system
of algebraic equations is sparse, the computational efficiency of the method has been
fully improved and the method can now be easily used to simulate large-scale applied
mechanics problems. This paper documents the first attempt to apply the method for the
numerical solutions of 3D elasticity problems. Some possible improvement as well as the
influence of several factors on the overall accuracy of the method are also discussed. Nu-
merical examples with up to 100,000 unknowns are solved successfully on a Core (TM)
i7 PC using the developed LMFS code. A self-contained Matlab code is provided in the
end of the paper.

2 Statement of the basic problem

The well-known Cauchy-Navier equations for 3D elasticity problems are [28–30]:(
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with the following displacement and/or traction boundary conditions:

ui = ūi on boundary Γu, (2.2a)
ti = t̄i on boundary Γt, (2.2b)

where ui and ti denote displacements and boundary tractions, respectively, the barred
quantities ūi and t̄i represent known boundary conditions, and ν stands for the Poisson’s
ratio. According to theory of linear elasticity, the strains (ε ij) and stresses (σij) are related
to displacements as

ε ij =
1
2

(
∂ui

∂xj
+

∂uj

∂xi

)
, (2.3a)

σij =2µ

(
ε ij+

ν

1−2ν
εkkδij

)
, (2.3b)


