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MODIFIED TIKHONOV REGULARIZATION FOR IDENTIFYING

SEVERAL SOURCES

OLE LØSETH ELVETUN AND BJØRN FREDRIK NIELSEN

Abstract. We study whether a modified version of Tikhonov regularization can be used to identify
several local sources from Dirichlet boundary data for a prototypical elliptic PDE. This paper
extends the results presented in [5]. It turns out that the possibility of distinguishing between
two, or more, sources depends on the smoothing properties of a second or fourth order PDE.

Consequently, the geometry of the involved domain, as well as the position of the sources relative
to the boundary of this domain, determines the identifiability. We also present a uniqueness
result for the identification of a single local source. This result is derived in terms of an abstract

operator framework and is therefore not only applicable to the model problem studied in this
paper. Our schemes yield quadratic optimization problems and can thus be solved with standard
software tools. In addition to a theoretical investigation, this paper also contains several numerical
experiments.
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1. Introduction

We will study the following problem:

(1) min
(f,u)∈Fh×H1(Ω)

{
1

2
∥u− d∥2L2(∂Ω) +

1

2
α∥Wf∥2L2(Ω)

}
subject to

−∆u+ ϵu = f in Ω,

∂u

∂n
= 0 on ∂Ω,

(2)

where Fh is a finite dimensional subspace of L2(Ω), W : Fh → Fh is a linear regular-
ization operator, α is a regularization parameter, d represents Dirichlet boundary
data, ϵ is a positive constant, n denotes the outwards pointing unit normal vector
of the boundary ∂Ω of the bounded domain Ω, and f is the source. Depending on
the choice of W, we obtain different regularization terms, including the standard
version W = I (the identity map).

The purpose of solving (1)-(2) is to estimate the unknown source f from the
Dirichlet boundary data u = d on ∂Ω. Mathematical problems similar to this occur
in numerous applications, e.g., in connection with electroencephalography (EEG)
and electrocardiography (ECG), and has been studied by many scientists, see, e.g.,
[1, 2, 3, 4, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15]. A more detailed description of previous
investigations is presented in [5].

In [5] we showed with mathematical rigor that a particular choice of W almost
enables the identification of the position of a single local source from the bound-
ary data. That paper also contains numerical experiments suggesting that two or
three local sources, in some cases, can be recovered. The purpose of this paper
is to explore the several sources situation in more detail, both theoretically and
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experimentally. Moreover, we prove that our particular choice of W, which will be
presented below, enables the precise recovery of a single local source.

2. Analysis

2.1. Results for general problems. Let us consider the abstract operator equa-
tion

(3) Khx = b,

where Kh : X → Y is a linear operator with a nontrivial nullspace and possibly
very small singular values, X and Y are real Hilbert spaces, X is finite dimensional
and b ∈ Y . We will use the notation ∥ · ∥X and ∥ · ∥Y for the norms induced by
the inner products of X and Y , respectively. (For the problem (1)-(2), Kh is the
forward operator

Kh : Fh → L2(∂Ω), f 7→ u|∂Ω,
where Fh is a finite dimensional subspace of L2(Ω), and u is the unique solution of
the boundary value problem (2) for a given f .)

Applying traditional Tikhonov regularization, with the regularization parameter
α > 0, yields the approximation

(4) xα = argmin
x

{
1

2
∥Khx− b∥2Y +

1

2
α∥x∥2X

}
,

and, according to standard theory, the minimum norm least squares solution x∗ of
(3) satisfies

x∗ = lim
α→0

xα = Kh
†b ∈ N (Kh)

⊥
,

where N (Kh)
⊥

denotes the orthogonal complement of the nullspace N (Kh) of Kh,

and Kh
† represents the Moore-Penrose inverse of Kh.

Throughout this paper we assume that

B = {ϕ1, ϕ2, . . . , ϕn}
is an orthonormal basis for X and that

(5) Kh(ϕi) ̸= cKh(ϕj) for i ̸= j and c ∈ R.

That is, the images under Kh of the basis functions are not allowed to be parallel.
Note that (5) asserts that none of the basis functions belong to the nullspace N (Kh)
of Kh. (For PDE-constrained optimization problems one can, e.g., choose basis
functions with local support. We will return to this matter in subsection 2.2.)

Throughout this text,

(6) P : X → N (Kh)
⊥

denotes the orthogonal projection of elements in X onto N (Kh)
⊥
. In [5] we inves-

tigated whether a single basis function ϕj can be recovered from its image1 Khϕj .

More specifically, using the fact that Kh
†Kh = P, we observe that the minimum

norm least squares solution x∗
j of

(7) Khx = Khϕj

is

(8) x∗
j = Kh

†(Khϕj) = Pϕj .

1Since Kh has a nontrivial nullspace, it is by no means obvious that ϕj can be recovered from

its image Kh(ϕj).


