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Abstract. Using deep neural networks to solve PDEs has attracted a lot of attentions
recently. However, why the deep learning method works is falling far behind its em-
pirical success. In this paper, we provide a rigorous numerical analysis on deep Ritz
method (DRM) [47] for second order elliptic equations with Neumann boundary con-
ditions. We establish the first nonasymptotic convergence rate in H1 norm for DRM

using deep networks with ReLU2 activation functions. In addition to providing a
theoretical justification of DRM, our study also shed light on how to set the hyper-
parameter of depth and width to achieve the desired convergence rate in terms of
number of training samples. Technically, we derive bound on the approximation error

of deep ReLU2 network in C1 norm and bound on the Rademacher complexity of the

non-Lipschitz composition of gradient norm and ReLU2 network, both of which are of
independent interest.
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1 Introduction

Partial differential equations (PDEs) have broad applications in physics, chemistry, bi-
ology, geology and engineering. A great deal of efforts have been devoted to studying
numerical methods for solving PDEs [5, 7, 16, 22, 43]. However, it is still a challenging
task to develop numerical scheme for solving PDEs in high-dimension. Due to the suc-
cess of deep learning for high-dimensional data analysis in computer vision and natural
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language processing, people have been paying more attention to using (deep) neural net-
work to solve PDEs in high dimension with may be complex domain, an idea that goes
back to 1990’s [19, 21]. In the last few years, there are growing literatures on neural net-
work based numerical methods for PDEs. These works can be roughly classified into two
categories.

In the first category, deep neural networks are used to improve classical methods.
[10] designs a neural network to estimate artificial viscosity in discontinuous Galerkin
schemes, see also [6]. [32] trains a neural network serving as a troubled-cell indicator in
high-resolution schemes for conservation laws. [41] proposes a universal discontinuity
detector using convolution neural network and applies it in conjunction of solving non-
linear conservation. [46] uses reinforcement learning to find new and potentially better
data-driven solvers for conservation laws.

In the second category, deep neural networks are utilized to approximate the solution
of the PDEs directly. Being benefit from the excellent approximation power of deep neu-
ral networks and SGD training, these methods have been successfully applied to solve
PDEs in high-dimension. [3, 9] convert nonlinear parabolic PDEs into backward stochas-
tic differential equations and solve them by deep neural networks, which can deal with
high-dimensional problems. Methods based on the strong form of PDEs [31, 39] are also
proposed. In [31], physics-informed neural networks (PINNs) use the squared residu-
als on the domain as the loss function and treat boundary conditions as penalty term.
There are several extensions of PINNs for different types of PDEs, including fractional
PINNs [30], nonlocal PINNs [29], conservative PINNs [18], eXtended PINNs [17], among
others. A similar method presented in [25] proposes a residual-based adaptive refine-
ment method to improve the training efficiency.

In contrast to minimizing squared residuals of strong form, a natural alternative ap-
proach to derive loss functions are based on the variational form of PDEs [47, 50]. In-
spired by Ritz method, [47] proposes deep Ritz method (DRM) to solve variational prob-
lems arising from PDEs. The idea of Galerkin method has also been used in [50], where,
they propose a deep Galerkin method (DGM) via reformulating the problem of finding
the weak solution of PDEs into an operator norm minimization problem induced by the
weak formulation.

1.1 Related works and contributions

Although there are great empirical achievements in recent years as mentioned above, a
challenging and interesting question is that can we give rigorous analysis to guarantee
their performances as people has done in the classical counterpart such as finite element
method (FEM) [7] and finite difference method [22] ? Several recent efforts have been
devoted to making processes along this line. [26] consider the optimization and general-
ization error of second-order linear PDEs with two-layer neural networks in the scenario
of over-parametrization. [27, 36, 37] study the convergence of PINNs with deep neural
networks. When we were about to finish our draft, we aware that [24] give an error anal-


