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Abstract. This paper proposes a deep unfitted Nitsche method for solving elliptic in-
terface problems with high contrasts in high dimensions. To capture discontinuities
of the solution caused by interfaces, we reformulate the problem as an energy min-
imization problem involving two weakly coupled components. This enables us to
train two deep neural networks to represent two components of the solution in high-
dimensional space. The curse of dimensionality is alleviated by using the Monte-Carlo
method to discretize the unfitted Nitsche energy functional. We present several numer-
ical examples to show the performance of the proposed method.
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1 Introduction

In this paper, we continue our previous studies on elliptic interface problems [11, 14,
15], arising in many applications such as fluid dynamics and materials science, where
the background consists of rather different materials on the subdomains separated by
smooth curves (or surfaces) called interfaces. We aim to address the high-dimensional
challenge, which is well known as the curse of dimensionality leading to unaffordable
computational time in traditional numerical methods (e.g., finite difference and finite el-
ement methods).

Deep neural networks have been shown as a powerful tool to overcome the curse
of dimensionality [4, 6,9, 37], and have been applied to solve partial differential equa-
tions (PDEs), e.g., the deep BSDE method [8, 16], the deep Galerkin method (DGM) [33],
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the physics-informed neural networks (PINNs) [31], the deep Ritz method (DRM) [7],
and the weak adversarial networks (WAN) [38]. The deep BSDE reformulates the time-
dependent equations into stochastic optimization problems. DGM and PINNSs train neu-
ral networks by minimizing the mean squared error loss of the equation residual, while
DRM trains networks by minimizing the energy functional of the variational problem
equivalent to the PDEs. WAN uses the weak formulation and trains the primary and
adversarial network alternatively using the min-max weak formulation. Moreover, the
convergence of DRM was studied in [5,27], and the deep Nitsche method was proposed
in [26], which enhanced the deep Ritz method with natural treatment of essential bound-
ary conditions. In a recent work [32], Sheng and Yang trained an additional neural net-
work to impose the Dirichlet boundary conditions. However, in general, these neural
network-based methods require the smoothness of the solutions to the PDEs. They thus
can not be directly used to solve the elliptic interface problems, where the solutions are
only piecewise smooth.

In literature, there are some recent works of solving elliptic interface problems using
neural networks. For example, [36] proposed a network architecture similar to the deep
Ritz method [7], and solved the equivalent variational problem with the boundary con-
ditions approximated by a shallow neural network. [19] used different neural networks
to approximate the solutions in disjoint subdomains. They reformulated the interface
problem as a least-squares problem and solved it by stochastic gradient descent. [23]
proposed the discontinuity capturing shallow neural network (DCSNN) to approximate
piecewise continuous functions and solved elliptic interface problems by minimizing the
mean squared error loss consisting of the residual of the equation, boundary and inter-
face jump conditions.

In this paper, we propose a deep learning method for interface problems based on the
minimization of the unfitted Nitsche energy functional, inspired by our previous stud-
ies [11-13] on the unfitted Nitsche method. One of the most significant differences be-
tween the unfitted Nitsche method [2,12, 13,17, 21] and other numerical methods for
interface problems (e.g., the immersed type numerical methods [25, 34, 35, 39]) is that
the unfitted Nitsche finite element functions can be discontinuous inside elements. This
is possible by adopting two different sets of basis functions on the interface elements
(i.e., the elements cut by the interface) which are weakly coupled together using Nitsche
methods. Based on the unfitted Nitsche formulation, we can define the so-call unfitted
Nitsche energy functional (see equation (2.11) ). It turns out that the weak formulation of
unfitted Nitsche method is just the Euler-Lagrange equation of unfitted Nitsche energy
functional. To address the challenges of the curse of dimensionality, we naturally use
deep neural networks to represent functions in high dimensions. Following the idea of
classical unfitted Nitsche method [2,12,13,17], we use two deep neural networks: one
for the part inside the interface and the other one for the region outside the interface.
These two parts are weakly connected using Nitsche method. The deep unfitted Nitsche
method trains the two neural network functions independently using the same unfitted
Nitsche energy functional.



