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WEAK GALERKIN FINITE ELEMENT METHODS FOR
PARABOLIC PROBLEMS WITH [? INITIAL DATA

NARESH KUMAR AND BHUPEN DEKA

Abstract. We analyze the weak Galerkin finite element methods for second-order linear
parabolic problems with Z? initial data, both in a spatially semidiscrete case and in a fully
discrete case based on the backward Euler method. We have established optimal L? error
estimates of order O(h?/t) for semisdiscrete scheme. Subsequently, the results are extend-
ed for fully discrete scheme. The error analysis has been carried out on polygonal meshes
for discontinuous piecewise polynomials in finite element partitions. Finally, numerical
experiments confirm our theoretical convergence results and efficiency of the scheme.
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1. Introduction

There are various applications of parabolic partial differential equations
(PDEs) with non-smooth data arising in sciences and engineering such as
chemical diffusion, heat conduction processes, thermodynamics, and medical
science [6,7,14,16]. Classical finite element methods for parabolic problems
with non-smooth initial data have been studied broadly so far, an exten-
sive literature for the same can be obtained from [19,23-25,31]. Developing
numerical algorithms of parabolic equations with non-smooth initial data
has been a flourishing concern. Recently, the weak Galerkin finite element
method has attracted much attention in the field of numerical PDEs. As
referred to in [28], the weak Galerkin finite element methods (WG-FEMs)
have been established as a new finite element technique for solving PDEs,
which are derived from weak formulations of problems to replace the classical
differential operators (e.g., gradient, divergence, curl) by weak differential
operators which is approximated in suitable polynomial spaces and adding
the stabilizer term. There is no need to select the parameters of the stabiliz-
er broadly. More precisely, the WG-FEMs have a simple and parameter-free
formulation and the flexibility of using general polygonal meshes. With the
new concepts of weak function and weak gradient, the WG-FEMs allow
discontinuous function space as the approximation space on each element.
Unlike the classical finite element method, the WG-FEM is applicable for
unstructured polygonal meshes making it more suitable for complex geom-
etry that usually appears in real-life problems. The WG approach has been
developed for various types of PDEs in existing literature, such as elliptic
equations [18,21, 26, 29], parabolic equations [9, 10,17, 33, 34], and the hy-
perbolic problems [15,32]. The hybrid high-order (HHO) method is closely
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related to WG finite element method as the reconstruction operator in the
HHO method corresponds to the weak gradient in WG methods [5,11]. The
only difference between HHO and WG methods lies in the choice of the dis-
crete unknowns and the stabilization pattern. However, the links between
HHO and WG methods are not fully explored yet; nevertheless, they share
something in their roots. (cf. [3,8,11]). It is noteworthy that WG and H-
HO are based on different devising viewpoints and use somewhat different
analysis techniques.

We know that the higher order of convergence of finite element approx-
imations depends on the higher smoothness of the true solutions, which
demands higher regularity of the initial functions. The main concern of
this work is to study the convergence of weak Galerkin finite element ap-
proximations for homogeneous equations with non-smooth initial data using
polygonal meshes. The error analysis is highly motivated by the fact that
the solutions of parabolic problems have the so-called smoothing property
(cf. [19]). The solution is smooth for positive time ¢, even when the initial
data are not H' regular. Under the low regularity of solutions, convergence
analysis has remained a significant part of mathematical study up to the
present day. To derive optimal O(h"*!) (r > 1) in the L? norm for WG-
FEM, the minimum regularity assumption on the exact solution u should be
u € HY(0,T; HT1(Q)) (for instance, see [17,34,35]). More recently, in [9],
the authors have shown the convergence of WG finite element solution to
the true solution at an optimal rate in L?(L?) norm under the assumption
that v € L2(0,T; H™(Q)) N H*(0,T; H™~1(Q2)). In the case of piecewise
linear WG-FEM (i.e., r = 1), the optimal error estimate requires the initial
value to be in H' (see, Theorem 3.2 in [9]) and for L? initial data error anal-
ysis in [9] leads to sub-optimal order of convergence in L?(L?) norm (see,
Remark 3.2). In fact, optimal L>°(L?) error estimate in [10] for linear weak
Galerkin elements demands initial data u® € H3(Q) (see, Remark 3.4). In
this work, assuming initial data in L?, we have shown the convergence of WG
finite element solution to the true solution at an optimal rate in L? norm on
WG finite element space (P, P1, P3) (see, Theorem 3.2 and Theorem 4.1).
The non-smooth data error analysis heavily depends on the newly derived
optimal L? norm error estimates with smooth initial data u® € HS N H?
(see, Lemma 3.8 and Lemma 4.1). The obtained results intend to enhance
the numerical analysis of linear parabolic equations on polygonal meshes
with non-smooth initial data. To the best of our knowledge, the smoothing
property of the WG-FEM and HHO methods for the parabolic equation has
not been studied earlier.

The rest of this work is organized as follows. In Sec. 2, we have introduced
some commonly used notations and reviewed the weak Galerkin discretiza-
tion. Sec. 3 is concerned with the error analysis of the semidiscrete WG
finite element algorithm. In Sec. 4, the backward Euler scheme is proposed,
and optimal a priori error bounds in L°°(L?) norm is established. Sec. 5
discusses several numerical examples which demonstrate the robustness of
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